Главный Редактор. Почему подпрыгивает плоский камень? Или как пускать блинчики?

Почему подпрыгивает плоский камень? Или как пускать блинчики?Кто из нас не бросал плоские камешки по гладкой поверхности воды в надежде заставить их подпрыгнуть хотя бы разок-другой? Пускать "блинчики", "печь блины", запускать "лягушек" или "жабок" - вот лишь некоторые названия этой пляжной забавы. Все знают, что добиться даже двух-трех подпрыгиваний не так-то просто: придется потренироваться, каждый раз подолгу выискивая в песке подходящую гальку. Правильно подобрать и бросить камешек - целое искусство. А вот французские физики решили подойти к делу с научных позиций. Изучив поведение "прыгающих" по воде дисков, исследователи не только обосновали факты, уже известные любителям "блинчиков", но и сделали настоящее открытие.


Я не пренебрегаю никаким опытом, каким бы
пустяковым он ни казался на первый взгляд.
Я думаю, что игра маленьких мальчиков достойна быть объектом исследования философов.

Роберт Бойль (1627-1691)

Плоский камень подберу в песке,
Приоткинусь чуть, прицела ради,
Размахнусь - и
Жахну по реке,
По ее зеркально-чистой глади.
А. Тимиркаев

Игра всех времен и народов

Искусство пускания "блинчиков" известно, по крайней мере, с античных времен. Древние греки нередко развлекались, запуская в море найденные на берегу ракушки, камни и глиняные черепки. О состязаниях по бросанию ракушек, называвшихся "эпистокистос" (от греч. остакиа - ракушка), упоминает греческий лексикограф Юлий Поллукс (II век н. э.). Победителем считался тот, чья ракушка подпрыгнет наибольшее число раз. Римский христианский писатель Марк Минуций Феликс (II-III века н. э.) в своем "Октавии" оставил подробное описание аналогичных состязаний, где вместо ракушек использовали плоскую гальку округлой формы.

В Средние века традиция бросать камешки, судя по всему, не прерывалась. Так, в Англии с XII века стала популярной игра "ducks and drakes" (утки и селезни), суть которой заключалась в бросании вдоль поверхности воды камней или устричных раковин. Когда раковина подпрыгивала первый раз, говорили "утка", второй раз - "селезень" и так далее. Подобная игра упоминалась в первоначальной версии шекспировской пьесы "Генрих V" (XVI век). По легенде, сам король Англии запустил однажды в Темзу соверен - с тех пор выражение "to make ducks and drakes with one's money" (сделать "уток" и "селезней" своими деньгами) означает "пускать деньги на ветер". Позднее англичане вместо "ducks and drakes" стали пользоваться выражением "stone skimming" (скольжение камешков).

В Америке игру в "блинчики", называемую стоунскиппинг (stone skipping - подпрыгивание камешков), популяризировал чуть ли не сам Джордж Вашингтон, согласно легенде бросивший серебряный доллар в речку Потомак. Впрочем, скептики сомневаются, что прижимистый Вашингтон мог так просто распрощаться с долларом - скорее всего, это был обычный камень.

В XVI веке "блинчиками" заинтересовались военные - на этот раз в чисто практических целях. В 1578 году офицер британского флота Уильям Бурн (Bourne) впервые описал явление рикошета при стрельбе из артиллерийских орудий вдоль поверхности воды. Впоследствии этот способ стрельбы, позволявший увеличить дальность полета снаряда в два-три раза, широко использовали военные моряки, а во время Второй мировой войны он послужил основой для создания "прыгающей бомбы" (см. подробности для любознательных).

Американец Джердон Колеман-МакГи, всемирно признанный авторитет в пускании "блинчиков", написал книгу "Секреты стоунскиппинга", в которой обобщил свой многолетний опыт. Джердон считает стоунскиппинг не только увлекательным видом спорта, но и одним из лучших способов отдыха и расслабления. "Бросая камешки в воду, вы забываете обо всем. Все неприятности и заботы отходят на второй план, остаетесь только вы и танцующий по воде камень". Колеман-МакГи надеется, что когда-нибудь стоунскиппинг войдет в число олимпийских видов спорта.

Но и сегодня пускание "блинчиков" - вполне серьезный вид спорта, имеющий массу поклонников во всем мире. Существует даже Североамериканская ассоциация стоунскиппинга (NASSA; не путайте с NASA, National Aeronautics and Space Administration - "Национальное управление по аэронавтике и исследованию космического пространства"), основанная в 1989 году с целью проведения ежегодных всемирных чемпионатов по бросанию камешков. К участию в состязании приглашаются все желающие независимо от возраста и уровня подготовки. Кстати, первым чемпионом мира стала двадцатидвухлетняя девушка, заставившая свой камешек подпрыгнуть 23 раза, а в 1992 году Колеман-МакГи (основатель и руководитель NASSA) добился 38 подпрыгиваний и попал в Книгу рекордов Гиннесса. Его рекорд оставался непревзойденным до 2003 года, когда камешек Курта Стайнера подскочил 40 раз .

Противодействие сил

Интуитивно понятно, что камень для пускания "блинчиков" должен быть плоским, не слишком маленьким, но и не очень тяжелым; бросать его нужно довольно сильно и почти горизонтально вдоль поверхности воды под небольшим углом к ней. Люди более искушенные знают также, что для лучшего результата желательно при броске слегка закрутить камень. Остальное - дело тренировок. И все же, что заставляет камень прыгать, подобно лягушке, по поверхности воды вместо того, чтобы сразу пойти ко дну?

Французский физик Лидерик Боке из университета г. Лиона, попытался дать точный ответ на этот вопрос, когда его восьмилетний сын Леонард, с которым они вместе пускали "блинчики", спросил: "Почему?" В отличие от многих других отцов Боке подошел к делу со всей серьезностью, то есть с позиций современной гидродинамики, механики и других разделов физики. В результате в 2002 году он опубликовал в серьезном журнале "American Journal of Physics" статью "Физика стоунскиппинга", описывающую основные закономерности процесса. "Поначалу, - говорит Боке, - это было для меня просто развлечением, дающим прекрасный пример того, как физика помогает лучше понимать явления повседневной жизни". Заметим, однако, что теория "блинчиков" вполне актуальна и с научно-технической точки зрения. Ее, например, необходимо учитывать при расчете траектории спуска космических аппаратов, поскольку при входе в плотную атмосферу Земли под слишком малым углом они могут подпрыгивать, подобно камешкам на воде.

Справедливости ради стоит отметить, что первая попытка создать теорию "блинчиков" была предпринята еще в XVIII веке итальянским натуралистом Ладзаро Спалланцани, более известным своими работами в области биологии и физиологии. Однако, несмотря на ряд верных догадок, сделанных Спалланцани, уровень развития теории жидкостей в то время не позволил ему правильно описать явление. И только благодаря Лидерику Боке наука о "блинчиках" впервые стала достоянием широкой общественности.

Согласно Боке, брошенный камень оказывается во власти двух основных сил. Одна из них - сила тяжести - пропорциональна массе камня и направлена вниз; она заставляет камень падать на поверхность воды и погружаться. Другая - назовем ее "силой отталкивания", - напротив, не дает камню погрузиться в воду, как бы выталкивая его наружу. Сила отталкивания направлена вверх, перпендикулярно площади контакта камня с водой. Если плоскость камня наклонена по отношению к поверхности воды, то силу отталкивания можно разложить на две составляющие - вертикальную и горизонтальную. Если сила тяжести преобладает над вертикальной составляю щей, камень тонет, если наоборот - подпрыгивает, затем снова падает, вновь подпрыгивает, и так несколько раз. Величина силы тяжести не зависит от того, как именно брошен камень, она задается массой камня и потому не меняется в ходе подпрыгиваний. Значение силы отталкивания, напротив, определяется в первую очередь условиями броска, зависит от многих параметров и меняется от прыжка к прыжку. Вот почему понимание природы этой силы - необходимое условие на пути постижения секретов стоунскиппинга.

Как сделать воду "твердой"

Основные закономерности силы отталкивания воды можно выяснить в ходе простого опыта. Если медленно опускать ладонь в воду параллельно ее поверхности, то практически никакого сопротивления не почувствуется. Вода, как и положено жидкости, плавно расступится, пропуская руку вглубь. А если резко опустить ладонь в воду, почувствуется удар о ее поверхность; при этом сама вода "разобьется" на брызги. Если ударить по воде ребром ладони - сила толчка заметно уменьшится. Таким образом, сила отталкивания тем больше, чем быстрее взаимодействует предмет с водой (то есть чем больше скорость полета камня или опускания руки) и чем больше площадь поверхности предмета, контактирующая с ней.А именно, отталкивание прямо пропорционально квадрату скорости, умноженной на площадь контакта. Все дело в том, что при быстром ударе молекулы жидкости не успевают "расступиться" и пропустить предмет, и чем он больше, тем труднее им это сделать. В результате жидкость как бы "твердеет", приобретая свойства твердого тела - упругость, хрупкость и способность создавать реакцию опоры, которая здесь выступает в роли силы отталкивания.

Все это хорошо известно любителям водных лыж и прыжков в воду. Встать на лыжи и опереться о воду не удается, пока катер, тянущий лыжника, движется медленно. Но стоит ему набрать скорость, и вода под ногами обретает упругость и твердость. Лыжи увеличивают площадь контакта с поверхностью воды, а при очень большой скорости можно обойтись и без них: для скольжения достаточно площади ступни, а то и пятки. Те же закономерности наблюдаются и при прыжках в воду: если плюхнуться всем телом в воду с большой высоты, можно получить не только синяки, но и серьезные травмы.

Таким образом, чем больше начальная скорость камня, тем лучше он станет отскакивать от поверхности воды. Чтобы "блинчик" подпрыгнул хотя бы раз, его скорость должна превышать некоторое критическое значение, необходимое для преодоления силы тяжести.Оно определяется из равенства силы тяжести и вертикальной составляющей силы отталкивания.

Кроме того, теория подтверждает известный из опыта факт, что камень должен быть плоским и крупным, но достаточно легким. Невольно напрашивается мысль, что лучше всего взять круглый камень. Однако руководитель NASSA Колеман-МакГи с этим не согласен: "Одна из лучших форм - правильный треугольник или пятиугольник размером с ладонь". Он даже разработал и запатентовал "фирменную" пятиугольную модель камня, названную им Эко-Камнем (EcoStone). Камень изготовлен из экологически чистых сортов глины - чтобы занятия стоунскиппингом не привели к загрязнению водоемов. Лидерик Боке никак не комментирует советы экс-рекордсмена, но явно предпочитает иметь дело с камешками круглой формы.

Однако, подобрав подходящий камень и запустив его с достаточно большой скоростью, вы вряд ли добьетесь впечатляющих результатов даже после многочисленных тренировок. Дело в том, что после первого же удара о поверхность воды камешек изменит ориентацию в пространстве и в следующий раз ударится уже не плоской частью, а, скажем, ребром. Это резко изменит баланс сил в пользу силы тяжести, и камень скоропостижно утонет, не оправдав возложенных на него надежд. Увеличив скорость камня, вы лишь усилите вероятность его быстрой дестабилизации. Что же делать?

Эффект волчка

Любители пускания "блинчиков" знают: при броске нужно закрутить камень, заставив вращаться вокруг оси, перпендикулярной его плоскости. Вращение придает телу большую стабильность, оно стремится сохранить направление оси своего вращения в силу "гироскопического эффекта". С ним знаком любой ребенок, хотя бы раз игравший с волчком: волчок не падает, только когда быстро крутится.

Джердон Колеман-МакГи дает следующий практический совет по закручиванию камешков при броске: "Зажмите плоский камень между большим и средним пальцами руки, обхватив его ребро указательным пальцем. Частая ошибка - класть на ребро также и большой палец. Не делайте этого, пусть он лежит сверху. Приготовьтесь к броску, отведя запястье назад и немного вверх и прицелившись так, чтобы камень полетел практически параллельно поверхности воды. Затем резко выбросьте запястье вперед и запустите камень, закрутив его как можно сильнее".

Теория Лидерика Боке не дает конкретных советов, как держать камень, зато однозначно свидетельствует: чем с большей скоростью вы запускаете "блинчик", тем сильнее надо его закручивать. Кроме того, теория позволяет вычислить оптимальную скорость вращения камешка заданных размеров и скорости его поступательного движения, а также число "испеченных блинчиков" при различных значениях этих параметров. К примеру, расчеты Боке показали, что для получения 38 подпрыгиваний диска радиусом 5 см и массой 100 г Колеман-МакГи должен был бросить его со скоростью 12 м/с, закрутив до 14 оборотов в секунду (см. подробности).

"Блинчик" тонет

И все же, с какой бы скоростью вы ни бросали и ни закручивали камень и сколь идеальной ни была бы его форма, он не будет "танцевать" бесконечно, а в конце концов утонет. Причин этому по крайней мере две. Во-первых, в ходе подпрыгиваний камень постепенно теряет энергию вследствие трения о воду и сопротивления воздуха, что приводит к уменьшению его скорости и, следовательно, к уменьшению силы отталкивания воды. Во-вторых, несмотря на гироскопический эффект, многочисленные удары о воду понемногу смещают ось вращения камня, что в конечном итоге приводит к полной потере его стабильности. Вопрос в том, что произойдет раньше: уменьшение скорости ниже критического значения или дестабилизация блинчика?

Оказывается, истинную причину потопления можно определить визуально, если внимательно наблюдать за процессом сбоку. Если плоскость камня сохраняет пространственную ориентацию, то с каждым ударом о воду камень теряет примерно одинаковую энергию. В результате расстояние между прыжками постепенно сокращается (оно пропорционально скорости камня). Перед тем как утонуть, камень как бы топчется на месте (англоязычные любители стоунскиппинга называют это характерное явление "pitty-pat"). В данном случае главная причина затопления - недостаток скорости. Если же перед затоплением pitty-pat не наблюдался - причина в преждевременной дестабилизации камня, то есть при выбранной скорости броска он был закручен недостаточно.

Магический угол

Итак, форма камня, скорость его полета и скорость вращения - вот три слагаемых успеха. Однако это еще не все. Как уже говорилось, бросать камень нужно почти горизонтально, вдоль поверхности воды. Но как лучше сориентировать саму плоскость камня, каков оптимальный угол ее наклона по отношению к поверхности воды? На первый взгляд может показаться, что чем он меньше, тем лучше. Так ли это?

Поначалу Боке пренебрег точными значениями угла наклона плоскости камня, а также угла между траекторией его полета и поверхностью воды (назовем их углом наклона и углом падения соответственно), положив их в первом приближении просто малыми. Однако затем он вновь задумался о роли углов, поскольку их значения могут существенно влиять на величину силы отталкивания воды (они входят в коэффициент пропорциональности между силой отталкивания и квадратом скорости, умноженной на площадь контакта). Поскольку описать это влияние теоретически оказалось довольно сложно, Боке решил обратиться к эксперименту, соорудив катапульту, которая метала бы "камешки" в бассейн с водой с определенной скоростью движения и вращения, а также с разными углами наклона и полета. Для проведения точных измерений достаточно было снабдить катапульту камерой скоростной съемки. Такая установка позволила бы проверить на практике предсказания теории, а также устранить некоторые ее неясности.

Идея Боке пришлась по душе его коллеге Кристоферу Клане из марсельского Института по исследованию неравновесных явлений. Совместными усилиями с участием студентов из знаменитой парижской Ecole Polytechnique (Политехнический институт) была создана катапульта для запуска "блинчиков" в двухметровый бассейн. В качестве моделей камешков использовались алюминиевые диски диаметром несколько сантиметров и толщиной около трех миллиметров. Камера с частотой съемки 2250 кадров в секунду регистрировала только первый отскок диска от воды. Но при этом можно было измерить время отскока диска от воды и изучить траекторию его полета, плавно меняя по очереди все ключевые параметры (поступательную и вращательную скорости, углы наклона самого диска и его траектории к поверхности воды).

Как ожидалось, эксперименты подтвердили правильность основных выводов теории. Но исследователей ждал и сюрприз: оказалось, что существует значение угла наклона плоскости диска к поверхности воды, при котором он отскакивает лучше всего (то есть время отскока минимально). Эффект наблюдался при любых значениях остальных параметров. Измерения показали, что "магический" угол равен 20 градусам.

Невольно напрашивался вывод: для достижения максимального числа подскоков необходимо запустить "блинчик" под этим "магическим" углом. В предвкушении нового мирового рекорда французские физики приступили к экспериментам в большом бассейне. Однако обнаружилось, что катапульта, как ни старается, не может заставить диск подпрыгнуть более двадцати раз. По мнению Клане, установка оказалась недостаточно устойчивой и при больших скоростях запуска диска начинала сильно вибрировать. Кроме того, выяснилось, что зависимость числа подскоков от угла наклона диска достигает максимума не при "магическом" угле 20 градусов, как ожидалось, а в интервале от 10 до 20 градусов (причем явно ближе к 10)…

Таким образом, праздновать победу еще рано: ученым предстоят новые исследования. "Наука о блинчиках" - это вам далеко не детская забава.

Помогут ли изыскания французских исследователей рядовым гражданам достичь успехов в пускании "блинчиков"? В отличие от катапульты человек все равно не сможет с ходу запустить камень под строго определенным углом с точно заданной скоростью полета и вращения. Да и как измерить их в момент броска? Так что, даже пройдя "курс теоретической подготовки", все равно придется долго тренироваться, отрабатывая технику броска, как это и делали испокон века миллионы любителей "блинчиков", не обремененные знанием физики. Зато теперь, отправляясь к берегу водоема с плоским камешком в руке, вы будете чувствовать себя гораздо увереннее - как человек, вооруженный последними научными достижениями. И, может быть, удача вам улыбнется.

Кандидат физико-математических наук А. ЗАЙЦЕВА 

Просмотров: 716
Категория: По направлениям » Для детского сада » Развивающие игры и занятия для дошкольников




Другие новости по теме:

  • Главный Редактор. Должен ли быть ребенок послушным или как сохранить его любовь?
  • Редактор. Камень с начинкой
  • Редактор. Что должно присутствовать на праздничном столе при встрече 2011 года Кролика и как украсить дом?
  • Сухова Наталья Александровна. Брошюра для родителей «Советы, что можно сделать или сказать, когда ребенок кричит и не хочет идти в детский сад»
  • Анастасия Владимировна Миллер. Раннее развитие: что лучше для Вашего малыша или Как развить ребенка и не навредить
  • Главный Редактор. Весь мир к его ногам. Что подарить мужчине?
  • Ерошкина Валентина Васильевна. «…Воспитывать его так, чтобы он был счастлив…»
  • Долгий Лилия Михайловна. Конспект исследовательской деятельности в подготовительной группе с использованием технологии Савенкова А.И. Тема: «Камень»
  • Татьяна Быкова. Статья: что необходимо учитывать при выборе игрушки своему ребёнку
  • Марчук Наталья Анатольевна. Конспект игровой образовательной ситуации по ознакомлению с окружающим миром в старшей группе «Незнайка и лунный камень»
  • Гафиятуллина Лилия Рафаиловна. Статья 'Что должен знать ребёнок при поступлении в школу?'
  • Шаповал Галина Германовна. Советы и рекомендации для заботливых родителей «Что делать, если ребенок кусает других детей?»
  • Семьина Ирина Евгеньевна. Проект «У воды, на воде, под водой…»
  • Главный Редактор. Презентация Нужен ли педагогу свой сайт? Как его создать?
  • Ирина Викторовна Пермякова. Как хорошо, что есть театр!
  • Волоскова Н.В., Комарова И.В.. Проект «Как хорошо, что есть семья»
  • Малиновская Ольга Павловна, Потапова Наталья Александровна, Потапова Наталья Александровна. Интегрированное занятие по здоровому образу жизни «Что бы здоровье сохранить — научись его ценить»
  • Никонова Ульяна Юрьевна. «Вот веселый огород, что здесь только не растет!»
  • Добрынина Лариса Анатольевна. Конспект интегрированной НОД «Что есть в печи — все на стол мечи»
  • Инна Фоменко. Что такое «фонематический слух», как и когда он формируется у детей?
  • Гамрецкая Анна Сергеевна. Конспект занятия «Вот веселый огород, что здесь только не растет»
  • Неверовская Елена Геннадьевна. ЧТО ДОЛЖЕН ЗНАТЬ БУДУЩИЙ ПЕРВОКЛАССНИК И КАК ЭТОМУ НАУЧИТЬ.
  • Майорова Ольга. Формула здоровья «Здоровье – это то, что нужно беречь».
  • Степаненко Наталья Михайловна. Статья 'Мир эмоций дошкольника. Как сделать его ярче?'
  • Воронина Лариса Павловна. Что делать если ваш ребенок Левша?
  • Козлова Рафия Ряшитовна. Азбука безопасности «Помнить все должны о том, что нельзя шутить с огнём»
  • Москалёва Ольга Михайловна. Деловая игра по экспериментированию «Что? Как? Почему?» организация опытно-исследовательской деятельности в ДОУ
  • Приймак Наталья Николаевна. Что делать, если ребенок дошкольного возраста берет чужое?
  • Копычева Татьяна Владимировна. «Как побороть страх воды у детей от года?»
  • Мария Дорошенко. Конспект занятия кружка театральной деятельности для старшего возраста «Что такое хорошо, что такое плохо»



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       






    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь