Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/init.php on line 69 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/init.php on line 69 Warning: strtotime(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/vuzliborg/vuzliborg_news.php on line 53 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/vuzliborg/vuzliborg_news.php on line 54 Warning: strtotime(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/vuzliborg/vuzliborg_news.php on line 56 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/vuzliborg/vuzliborg_news.php on line 57
|
Бесконечность. Декарт. - Историко-философские очерки - Койре - Сочинения и рассказыКак мы только что видели, аргументы Зенона распространяются на все фундаментальные проблемы и концепции геометрии. Мы сейчас увидим, что они распространяются также и на область арифметики, так что в математике невозможно, так сказать, и шага ступить без того, чтобы не столкнуться с дихотомией. И в этом нет ничего удивительного, поскольку базой для аргументов Зенона служат трудности, неотделимые от понятия бесконечного. Итак, мы обнаруживаем их везде, где сталкиваемся с понятием бесконечности; но в свою очередь это понятие присутствует почти повсеместно, и в частности в математике, основой которой оно является. По той же причине если бы кажущееся противоречие понятия бесконечности было допущено в качестве реального, то тем самым мы сразу Hie вынуждены были бы отбросить и подвергнуть осуждению математику в целом – не только теорию функций и исчисление бесконечно малых, но с ними также евкли-дову геометрию и даже арифметику. Является ли в действительности противоречивым само по себе понятие (актуальной) бесконечности? Положительный ответ на этот вопрос встречается довольно часто, причем для его доказательства всегда можно прибегнуть к аргументам Зенона. При этом утверждается, что невозможно «понять» бесконечное, т. е. рассматривать в качестве актуального нечто незавершенное, считать выполненным и законченным уходящее в бесконечность де' ление. Со своей стороны мы утверждаем, что кажущиеся противоречия проистекают из двух случаев смешения понятий, а именно когда отождествляют неопределенное с бесконечным и когда финитарные понятия, например численное равенство, применяют к бесконечному. Впрочем, выяснение и обсуждение этих вопросов исчерпывающим образом осуществили в своих работах Б. Рассел и А. Кутюра, так что мы не будем вновь этим заниматься «. Хотелось бы, однако, еще раз подчеркнуть тот факт, что понятие ддтуальной бесконечности не может быть редуцировано либо реконструировано, исходя из других понятий. Понятия виртуальной бесконечности, бесконечного возрастания и неограниченного изменения, к которым намеревались свести актуальную бесконечность или которыми даже пытались заменить ее, наоборот, сами основываются на нй и логически ее предполагают. Логически виртуальная бесконечность возможна лишь на базе актуальной бесконечности. Только лишь в бесконечности (актуальной) некоторая величина, некоторая переменная может возрастать и изменяться до бесконечности. Вне всякого сомнения, поскольку бесконечность является неопределенной, утверждение, что она есть нечто завершенное, является противоречивым; но если речь идет об актуальной бесконечности, то все обстоит противоположным образом. Или, прибегая к аристотелевской терминологии: ничто не может одновременно быть актуальным и в возможности; но вместе с тем актуальное является основой потенциального, а не наоборот. Если на некоторой прямой можно обозначить бесконечное число точек, то это потому, что они там есть. Если возможен счет до бесконечности, то потому, что число конечных чисел бесконечно. Точно так же понятие предела, с помощью которого стремятся обойти трудности и элиминировать понятие актуальной бесконечности, предполагает наличие этой последней. Действительно, утверждение, что некоторая точка или величина являются пределом последовательности, равносильно утверждению, что, сколь бы близко ни подойти к пределу, сколь бы мал ни был отделяющий от него промежуток, в последнем всегда содержится бесконечное множество точек, бесконечное множество элементов этой последовательности. Итак, при определении предела понятие бесконечности дважды заявляет о себе: а) в понятии бесконечного числа точек; б) в понятии бесконечного приближения к пределу. Напомним в этой связи, что теорию актуальной бесконечности вполне правомерно связывают с именем Георга Кантора, но что задолго до Кантора она служила уже основой философского и математического мышления. Не говоря пока о Бернарде Больца-но – гениальном предшественнике Кантора, который, не понятый своей эпохой, был также забыт потомками и вновь открыт лишь в наше время, – мы прежде всего обращаем свой взор на великого основоположника новой науки и новой философии Рене Декарта. Превосходящий Кантора мощью и глубиной своих взглядов, он смог не только утвердить существенную законность актуальной бесконечности и показать невозможность замены ее понятием неопределенного, но и, более того, сделать ее основанием и началом теории конечного. Категория: Библиотека » Философия Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|