§1. Риски техносферы - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика

- Оглавление -


Посмотрим с системной точки зрения на эволюцию техносферы. Развитие техногенной сферы в ХХ веке происходило гораздо более высокими темпами, чем в предыдущие столетия. Это привело к двум противоположным последствиям и в индустриально развитых странах, и во всем мире:

       были достигнуты выдающиеся результаты в электронной, атомной, космической, авиационной, энергетической и химической технике, в биологии, генной инженерии, продвинувшие человечество на принципиально новые рубежи во всех сферах жизнедеятельности;

       были созданы невиданные ранее потенциальные и реальные угрозы человеку, созданным им объектам, локальной и глобальной среде обитания не только в военное, но и в мирное время.

Преимущественно в последнее десятилетие эти угрозы были осознаны под влиянием крупнейших техногенных катастроф на объектах различного назначения: ядерных (СССР, США), химических (Индия, Италия, США, Мексика, СССР), космических и авиационных (США, Россия), надводных и подводных (СССР, США, Эстония, Англия). Анализ и обобщение многочисленных данных о ЧС (измеряемых тысячами и десятками тысяч в наиболее развитых странах) позволили провести классификацию техногенных аварий и катастроф. По масштабам охваченных ими стран и территорий, по числу жертв и пострадавших, по экономическому и экологическому ущербу были выделены локальные, местные, территориальные, региональные, федеральные и трансграничные чрезвычайные ситуации.

По степени потенциальной опасности, приводящей к подобным катастрофам в техногенной сфере гражданского комплекса, можно выделить объекты ядерной, химической, металлургической и горнодобывающей промышленности, уникальные инженерные сооружения (плотины, эстакады, нефтегазохранилища), транспортные системы (аэрокосмические, надводные и подводные, наземные), перевозящие опасные грузы и большие массы людей, магистральные газо-, нефте- и продуктопроводы. Сюда же относятся многие объекты оборонного комплекса – ракетно-космические и авиационные системы с ядерными и обычными зарядами, атомные подводные лодки, крупные склады обычных и химических вооружений.

Аварии и катастрофы на указанных объектах могут инициироваться опасными природными явлениями – землетрясениями, ураганами, штормами. Сами техногенные аварии и катастрофы при этом могут сопровождаться радиационным и химическим загрязнением, взрывами, пожарами, обрушениями. Возникает синергетический эффект – стихийные бедствия в современной техносфере могут вызвать лавину чрезвычайных ситуаций. Имеет место и обратная связь – производственная деятельность может спровоцировать природные катастрофы с тяжелыми последствиями.

Заметим, что сейчас в мировой техногенной (гражданской и оборонной) сфере насчитывается до 103 объектов ядерной техники мирного и военного назначения, более 5·104 ядерных боеприпасов, до 8·104 тонн химических вооружений, сотни тысяч тонн взрыво- и пожароопасных продуктов, аварийно химически опасных веществ (АХОВ), десятки тысяч объектов с высокими запасами энергии.

Вероятности возникновения наиболее тяжелых катастроф первых трех классов в мирное время составляют от (2÷3)·10‑2 до (0,5÷1)·10‑1 в год, а ущербы от 1 до 100 млрд долл./катастрофа. При этом их риски изменяются в пределах от 10 тыс. долл./год до 10 млрд долл./год (понимаемые в этом пункте как произведение вероятности аварии или катастрофы и прямого ущерба, который она приносит).

После Чернобыльской катастрофы многое сделано по повышению безопасности на АЭС. Среди основных принципов технической безопасности атомных электростанций особое место занимает принцип глубоко эшелонированной защиты, основанный на применении системы барьеров на пути распространения радиоактивных веществ и ионизирующих излучений, а также системы технических и организационных мер по защите персонала и населения.

Принцип глубоко эшелонированной защиты АЭС предполагает также создание ряда последовательных уровней защиты от вероятных отказов технических средств и ошибок персонала.

Первый уровень – это качественно выполненный проект АЭС, а также эффективность подготовки и переподготовки эксплуатационного персонала.

Второй уровень – обеспечение надежности работы оборудования путем выявления и устранения отказов. Технически он достигается резервированием оборудования и наличием диагностических систем для контроля состояния оборудования.

Третий уровень – обеспечивается инженерными системами безопасности, осуществляющими аварийный останов реактора, отвод тепла от активной зоны, а также удержание радиоактивных веществ в заданных границах помещений и сооружений.

Четвертый уровень – обеспечивается действиями персонала при авариях, выполнением заранее запланированных и отработанных мероприятий по управлению ходом развития запроектной аварии. При этом используются любые исправные системы и средства и задействуются дополнительные технические средства и системы, специально предназначенные для целей управления запроектными авариями.

Пятый уровень – обеспечивается выполнением противоаварийных мер за пределами площадки АЭС и реализацией планов защиты населения и ликвидации последствий аварий на местности вокруг АЭС.

Состояние всех этих уровней защиты АЭС должно учитываться при лицензировании станций.

К сожалению, реальное состояние систем технической безопасности ядерно- и радиационно опасных объектов далеко не полностью отвечает современным требованиям, выработанным на основе новых научных представлений и накопленного опыта. В частности, принцип глубоко эшелонированной защиты пока лишь провозглашен в нормативном документе (ОПБ‑88) и не реализован еще в полном объеме на практике, что необходимо учитывать в реальной обстановке при разработке планов мероприятий по защите населения в случае радиационной аварии на АЭС.

При анализе безопасности техногенной сферы следует учитывать как упомянутые выше ущербы, так и серийность соответствующих потенциально опасных объектов. Наиболее тяжелые аварийные ситуации возникают на уникальных объектах – единичных и малосерийных. Число однотипных атомных энергетических реакторов составляет 1‑10 при их общем числе в эксплуатации 450‑500, число однотипных ракетно-космических систем обычно составляет от 3‑5 до 50‑80. Среднесерийные потенциально опасные объекты исчисляются сотнями и тысячами, а крупносерийные – десятками и сотнями тысяч (автомобили, сельскохозяйственные машины, станки). В соответствии с этим интегральные экономические риски, определяемые произведением единичных рисков на число объектов, оказываются сопоставимыми как для крупно-, так и для мелкомасштабных катастроф.

Таким образом, ущербы от единичных крупно- и мелкомасштабных катастроф отличаются на 8‑10 порядков, риски на 4‑6 порядков, а интегральные ущербы на 1‑3 порядка (см. табл. 4).

Таблица 4. Вероятности крупных аварий (за год).

п/п

Типы объектов

Расчетные

Реальные

Проектные

Запроектные

1

Реакторы

Активная зона

10‑6

10‑6

2·10‑3

Первый контур

10‑5

10‑6

5·10‑3

2

Системно-космические объекты

10‑4

10‑3

5·10‑2

3

Турбоагрегаты

10‑3

10‑4

3·10‑2

4

Летательные аппараты

10‑3

10‑4

5·10‑3

5

Трубопроводы (1000 км)

10‑4

2·10‑3

10‑2

 

Исключительно важное значение как для нашей страны, так и для других промышленно развитых стран имеет достигнутый уровень проектного обоснования безопасности потенциально опасных объектов. Применительно к объектовым и локальным авариям для крупносерийных технических систем, в которых опасные повреждения возникают в нормальных условиях эксплуатации, уровень проектного обоснования безопасности и надежности составляет 10‑100%. При этом большое значение имеют национальные и международные нормы проектирования, изготовления и эксплуатации, а также огромный и длительный опыт обеспечения безопасного функционирования этих систем.

Опасные и катастрофические разрушения крупно- и среднесерийных технических систем в условиях нормальной эксплуатации прогнозируются уже в существенно меньшей мере – от 1 до 10%. Предварительный количественный анализ крупных аварийных ситуаций удается пока проводить в 0,1‑1,0% случаев. Конкретные техногенные катастрофы регионального и национального характера получают отражение в расчетах и прогнозах не более чем в 0,001‑0,1%. Глобальные катастрофы, как правило, не предсказываются.

В приведены данные о вероятностях и рисках техногенных аварий и катастроф на объектах с исключительно высокой потенциальной опасностью. При этом различие в уровнях требуемых и приемлемых (в национальных и международных рамках) рисков, с одной стороны, и уровнем реализованных рисков – с другой, достигает двух и более порядков. Вместе с тем известно, что повышение уровня защищенности объектов от аварий и катастроф на один порядок требует больших усилий в научно-технической сфере и существенных затрат, сопоставимых с 10‑20% стоимости проекта.

При анализе безопасности сложных технических систем сформулированы три основных вида аварийных ситуаций: проектные, запроектные и гипотетические. Во многих технических системах их характеризуют такие параметры, как локальное напряжение  и деформация , число циклов N, температура t и время  эксплуатации. В зависимости от типа потенциально опасных объектов имеет место очень широкая вариация этих параметров (100 < N < 1012, ‑270ºC < t < 10000ºC, 100 сек << 80 лет).

Проектные аварийные ситуации, как правило, охватывают области накопления повреждений, описываемые классическими теориями сопротивления материалов, упругости, пластичности и ползучести. Расчетные и экспериментально определяемые напряжения и деформации при этом остаются на уровне предела упругости. При переходе к запроектным авариям обычно анализируются нелинейные закономерности деформирования и разрушения – при этом напряжения становятся менее информативными параметрами, чем деформации. Повреждения от вибраций переходят в повреждения от малоцикловой усталости. Еще большее возрастание  и  обусловливает переход к гипотетическим авариям и катастрофам. При этом теоретической основой анализа таких ситуаций является статическая и динамическая нелинейная механика разрушений.

Одним из примеров такого подхода к количественному анализу развития аварийных ситуаций может служить расчетно-экспериментальное обоснование безопасности атомной станции теплоснабжения АСТ‑500, выполненное в ОКБМ МАЭ (г. Нижний Новгород) и ИМАШ РАН (г. Москва). В качестве барьеров выхода радиоактивности при тяжелой аварии рассмотрены корпус реактора, страховочный корпус и контаймент. Поэтому рассчитываемое и контролируемое развитие аварий с образованием и распространением трещин, с раскрытием главных болтовых разъемов дает не мгновенное катастрофическое разрушение, а монотонно нарастающие (в течение часов) давление, температуру и утечки. В этом случае могут быть применены системы аварийной защиты, меры локализации аварии и механизмы управления чрезвычайной ситуацией. По такому пути предстоит проходить во многих других потенциально опасных ситуациях.

Просмотров: 1715
Категория: Библиотека » Философия


Другие новости по теме:

  • §2. Социально‑политические последствия чрезвычайных ситуаций и пути их преодоления - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • 1.3. Связь фликкер‑шума и степенных распределений - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • 1.1. Фликкер‑шум - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • 3.1. DR‑модель. Точное вычисление показателей - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • §3. Россия в области управления риском и обеспечения безопасности. Не позади, а впереди мирового сообщества - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • Глава XI. Русла и джокеры. Новый подход к прогнозу поведения сложных систем и катастрофических явлений - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • Глава IX. Циклические риски и системы с запаздыванием - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • §1. Особенности создания и функционирования систем управления в условиях ЧС - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • §6. Состояние и опыт организации и автоматизации управления в условиях ЧС - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • §1. Статистика катастроф и бедствий. Распределения с тяжелыми хвостами - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • Глава XI. Системы управления в чрезвычайных ситуациях - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • §6. Быстрые и медленные бедствия и чрезвычайные ситуации. Необходимость изменения подхода к ним: хирургия и терапия - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • 3.3. Высокий технический уровень систем и средств спасения - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • §2. Структура и функции системы управления - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • 3.4. Комплекс мер по совершенствованию системы предупреждения и ликвидации ЧС - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • 3.1. Технология планирования работ по предупреждению и ликвидации ЧС - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • ЧЕЛОВЕК. Л.Б.Шульц  (КГСХА). В  ПОИСКАХ  НОВЫХ  АВТОРИТЕТОВ, ИЛИ  ХРОМАЯ  МЕТОДОЛОГИЯ - Отражения. Труды по гуманологическим проблемам - А. Авербух - Синергетика
  • Глава X . Самоорганизованная критичность как универсальный механизм катастроф - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • 4.2. Особенности уравнения Хатчинсона с двумя запаздываниями и с малой миграцией - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • §6. Катастрофические процессы в задачах со стоками энергии - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • §3. Планирование работ по предупреждению и ликвидации ЧС - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • Н. Д. Кондратьев. ОСНОВНЫЕ ПРОБЛЕМЫ ЭКОНОМИЧЕСКОЙ      СТАТИКИ И ДИНАМИКИ. (Предварительный эскиз) - СОЦИО-ЛОГОС - Неизвестен - Философия как наука
  • Глава IV. Концепция управления риском и ее математические модели - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • §7. О создании государственной спасательной службы МЧС России - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • 3.3. Паспорта риска. Локальные и региональные сценарии развития ЧС - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • 3.2. Локальные сценарии возникновения и развития ЧС - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика
  • К  ВОПРОСУ  О  СТАНОВЛЕНИИ  ПОНЯТИЯ "КУЛЬТУРА" У  Э. ФРОММА. А.А. Максименко (КГТУ) - Отражения. Труды по гуманологическим проблемам - А. Авербух - Синергетика
  • 2.     ОБРАТНАЯ СТОРОНА HE-ПОВСЕДНЕВНОГО - СОЦИО-ЛОГОС - Неизвестен - Философия как наука
  • В.А.Зайцев (КГТУ). К ДИАЛОГУ  КУЛЬТУР  (РОССИЯ  —  УКРАИНА) - Отражения. Труды по гуманологическим проблемам - А. Авербух - Синергетика
  • ГлаваVIII. Жесткая турбулентность как механизм возникновения катастроф[1] - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       





    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь