Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/init.php on line 69 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/init.php on line 69 Warning: strtotime(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/psylibukrwebnet/psylibukrwebnet_news.php on line 63 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/psylibukrwebnet/psylibukrwebnet_news.php on line 64 Warning: strtotime(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/psylibukrwebnet/psylibukrwebnet_news.php on line 66 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/psylibukrwebnet/psylibukrwebnet_news.php on line 67 ИСТОРИЯ ФИЛОСОФИИ.  ЭНЦИКЛОПЕДИЯ | ОГЛАВЛЕHИЕ А Б В Г Д Е Ж



ИСТОРИЯ ФИЛОСОФИИ.  ЭНЦИКЛОПЕДИЯ

- Оглавление -


ОГЛАВЛЕHИЕ


А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я


КУРАНТ (Courant) Рихард (1888-1972) – математик и философ, ученик Гильберта. Иностранный член АН СССР (1966). Получил образование в Университетах Бреслау (Вроцлав, Польша) и Цюриха (Швейцария). Профессор Геттингенского университета (Германия, 1920-1933), сменил Ф.Клейна на посту директора Геттингенской математической школы (1925). Профессор Университета Нью-Йорка (США, с 1934; именем К. назван Институт математических наук Университета Нью-Йорка). Главные направления математической деятельности – теория конформных отображений, дифференциальные уравнения и краевые задачи математической физики. Главные труды: "Методы математической физики" (1924, в соавт. с Гильбертом), "Что такое математика ?" (1941, в соавт. с Г.Роббинсом), "Математика в современном мире" (1964). В предисловии к книге "Методы математической физики" К. писал о том, что в своем развитии в 20 в. математические науки оказались перед возможностью утери внутренней взаимосвязи, а связь их лидирующих направлений с остальными науками существенно ослабела. В связи с этим, как считал К., "появилась настоятельная потребность в четком понимании существа математики, ее проблем и целей, а также в отыскании идей, которые смогли бы объединить людей самых различных интересов" ("Математика в современном мире"). К. считал, что математике принципиально невозможно дать семантически общее определение, как нельзя дать "общее определение музыке или живописи; никто не может оценить эти виды искусства, не понимая, что такое ритм, гармония и строй в музыке или форма, цвет и композиция в живописи. Для понимания же сути математики еще в большей степени необходимо подлинное проникновение в составляющие ее элементы". Он концептуализировал сущность математики в виде взаимосвязи "общего с частным, дедукции с конструктивным подходом /т.е. индукцией – C.C.I, логики с воображением". В математике "соответствующая линия в развитии – от конкретного и частного через абстракцию снова к конкретному и частному – придает теории свой определенный смысл и значение. Чтобы оценить роль этого основополагающего вывода, необходимо помнить, что слова "конкретный", "абстрактный", "частный", "общий" в математике не имеют ни постоянного, ни абсолютного значения. Они относятся главным образом к рамкам нашего мышления, к уровню нашего знания и характеру математического предмета. Например, мы охотно принимаем за "конкретное" то, что уже давно стало привычным. Что же касается слов "обобщение" и "абстракция", то они описывают не статическую ситуацию или конечный результат, а живой динамический процесс перехода от некоторого конкретного уровня к какому-то другому – "высшему" ("Математика в современном мире"). Интуиция (определявшаяся им как "трудноуловимый процесс мышления", "неуловимый жизненный элемент") всегда, по К., присутствует в математике, задавая направления абстрактному мышлению, будучи подкрепленной строгими рассуждениями. Однако у К. вызывали серьезные возражения выдвигаемые даже в 1960-е тезисы о том, что чистая математика в будущем обязательно найдет приложения и что "независимость математики от естественных наук расширяет ее перспективы". По мнению авторов таких тезисов (М.Стоун и др.), "математический ум, освобожденный от балласта, может воспарить до высот, откуда можно прекрасно наблюдать и исследовать лежащую глубоко внизу реальность". Однако, как писал К., "опасность преисполненного энтузиазмом абстракционизма усугубляется тем, что абстракционизм не отстаивает бессмыслицы, а выдвигает полуистину... Недопустимо, чтобы односторонние полуистины мирно сосуществовали с жизненно важными аспектами сбалансированной полной истины. Никто не станет отрицать, что абстракция является действенным инструментом математического мышления. Математические идеи нуждаются в непрестанной "доводке", придающей им все более абстрактный характер, в аксиоматизации и кристаллизации... Основные трудности в математике исчезают, если отказаться от метафизических предрассудков и перестать рассматривать математические понятия как описания некоторой реальности /т.е. важнейшие математические структуры должны выступать в качестве фундаментальных понятий внешнего мира – C.C.I... Наша наука питается живительными соками, идущими от корней. Эти корни, бесконечно ветвясь, глубоко уходят в то, что можно назвать "реальностью" – будет ли это механика, физика, биологическая форма, экономическая структура, геодезия или (в данном контексте) другая математическая теория, лежащая в рамках известного. Абстракция и обобщение имеют для математики не более важное значение, чем индивидуальность явлений, и, прежде всего, индуктивная интуиция. Только взаимодействие этих сил и их синтез способны поддерживать в математике жизнь, не давая нашей науке иссохнуть и превратиться в скелет. Мы должны решительно пресекать всякие попытки придать одностороннее направление развитию, сдвинуть его к одному полюсу антиномии бытия. Нам ни в коем случае не следует принимать старую кощунственную чушь о том, будто математика существует к "вящей славе человеческого разума". Мы не должны допускать раскола и разделения математики на "чистую" и "прикладную". Математика должна сохраниться и еще более укрепиться как единая живая струя в бескрайнем потоке науки". По К., результаты исследований, полученные в различных науках, должны "стимулировать математику, внести свой вклад в определенную сферу реальности. Полет в абстракцию должен означать нечто большее, чем взлет; отрыв от земли неотделим от возвращения на землю, даже если один и тот же пилот не в состоянии вести корабль через все фазы полета. Самые отвлеченные, чисто математические занятия могут быть обусловлены вполне ощутимой математической реальностью. То обстоятельство, что математика – эта чистая эманация человеческого разума – может столь эффективно помочь в понимании и описании физического мира, требует особого разъяснения, и не случайно этот вопрос всегда привлекал внимание философов".

C. B. Силков


К НАЧАЛУ


Просмотров: 519
Категория: Библиотека » Философия


Другие новости по теме:

  • В. Ф. Асмус. ПРОБЛЕМА ИНТУИЦИИ В ФИЛОСОФИИ И МАТЕМАТИКЕ | РАЗДЕЛ III АЛОГИЧЕСКИЕ ТЕОРИИ ИНТУИЦИИ В БУРЖУАЗНОЙ ФИЛОСОФИИ
  • В. Ф. Асмус. ПРОБЛЕМА ИНТУИЦИИ В ФИЛОСОФИИ И МАТЕМАТИКЕ | Предисловие Среди видов знания, различающихся философией, имеется так
  • В. Ф. Асмус. ПРОБЛЕМА ИНТУИЦИИ В ФИЛОСОФИИ И МАТЕМАТИКЕ | РАЗДЕЛ I ТЕОРИИ НЕПОСРЕДСТВЕННОГО ЗНАНИЯ В МЕТАФИЗИЧЕСКОМ ИДЕАЛИЗМЕ
  • В. Ф. Асмус. ПРОБЛЕМА ИНТУИЦИИ В ФИЛОСОФИИ И МАТЕМАТИКЕ | Глава Вторая ТЕОРИИ НЕПОСРЕДСТВЕННОГО ЗНАНИЯ В НЕМЕЦКИХ МЕТАФИЗИЧЕСКИХ
  • В. Ф. Асмус. ПРОБЛЕМА ИНТУИЦИИ В ФИЛОСОФИИ И МАТЕМАТИКЕ | РАЗДЕЛ II ТЕОРИИ НЕПОСРЕДСТВЕННОГО ЗНАНИЯ В НЕМЕЦКОМ ДИАЛЕКТИЧЕСКОМ
  • В. Ф. Асмус. ПРОБЛЕМА ИНТУИЦИИ В ФИЛОСОФИИ И МАТЕМАТИКЕ | Цитируемая литература Энгельс Ф., Диалектика природы. М., 1955.Ленин
  • В. Ф. Асмус. ПРОБЛЕМА ИНТУИЦИИ В ФИЛОСОФИИ И МАТЕМАТИКЕ | Заключение Трудности и противоречия, таящиеся в понятии интуиции,
  • В. Ф. Асмус. ПРОБЛЕМА ИНТУИЦИИ В ФИЛОСОФИИ И МАТЕМАТИКЕ | Глава Девятая ИНТУИЦИОНИЗМ И ПРОБЛЕМА ИНТУИЦИИ В МАТЕМАТИКЕ
  • В. Ф. Асмус. ПРОБЛЕМА ИНТУИЦИИ В ФИЛОСОФИИ И МАТЕМАТИКЕ | Глава Восьмая ПРОБЛЕМА ИНТУИЦИИ В ФИЛОСОФИИ МАТЕМАТИКИ ПУАНКАРЕ
  • В. Ф. Асмус. ПРОБЛЕМА ИНТУИЦИИ В ФИЛОСОФИИ И МАТЕМАТИКЕ | Глава Седьмая ТЕОРИЯ МНОЖЕСТВ КАНТОРА И ИНТУИЦИЯ АКТУАЛЬНО
  • В. Ф. Асмус. ПРОБЛЕМА ИНТУИЦИИ В ФИЛОСОФИИ И МАТЕМАТИКЕ | РАЗДЕЛ IV ВОПРОС ОБ ИНТУИЦИИ В МАТЕМАТИКЕ КОНЦА
  • В. Ф. Асмус. ПРОБЛЕМА ИНТУИЦИИ В ФИЛОСОФИИ И МАТЕМАТИКЕ | Глава Пятая НЕИНТЕЛЛЕКТУАЛИСТИЧЕСКИЕ ТЕОРИИ ИНТУИЦИИ 1. Противоречивая оценка
  • П.Минин. ГЛАВНЫЕ НАПРАВЛЕНИЯ ДРЕВНЕ-ЦЕРКОВНОЙ МИСТИКИ | ОГЛАВЛЕHИЕ П.Минин ГЛАВНЫЕ НАПРАВЛЕНИЯ ДРЕВНЕ-ЦЕРКОВНОЙ МИСТИКИ В кн.:
  • Р. Тарнас. ИСТОРИЯ ЗАПАДНОГО МЫШЛЕНИЯ | Примечания Введение Поскольку сегодня особую важность приобрел вопрос
  • Р. Тарнас. ИСТОРИЯ ЗАПАДНОГО МЫШЛЕНИЯ | ОГЛАВЛЕHИЕ Предисловие Эта книга представляет сжатую историю западногомировоззрения
  • Р. Тарнас. ИСТОРИЯ ЗАПАДНОГО МЫШЛЕНИЯ | ОГЛАВЛЕHИЕ I ГРЕЧЕСКОЕ МИРОВОЗЗРЕНИЕ Чтобы подойти к рассмотрению
  • Р. Тарнас. ИСТОРИЯ ЗАПАДНОГО МЫШЛЕНИЯ | ОГЛАВЛЕHИЕ ФИЛОСОФСКИЙ ПОИСК И ВСЕЛЕНСКИЙ РАЗУМ При всем
  • Р. Тарнас. ИСТОРИЯ ЗАПАДНОГО МЫШЛЕНИЯ | ОГЛАВЛЕHИЕ II ТРАНСФОРМАЦИЯ КЛАССИЧЕСКОЙ ЭПОХИ Как раз в
  • Р. Тарнас. ИСТОРИЯ ЗАПАДНОГО МЫШЛЕНИЯ | ОГЛАВЛЕHИЕ III ХРИСТИАНСКОЕ МИРОВОЗЗРЕНИЕ Наша следующая задача 150
  • Р. Тарнас. ИСТОРИЯ ЗАПАДНОГО МЫШЛЕНИЯ | ОГЛАВЛЕHИЕ ДАЛЬНЕЙШИЕ ПРОТИВОРЕЧИЯ И НАСЛЕДИЕ АВГУСТИНА Материя и
  • Р. Тарнас. ИСТОРИЯ ЗАПАДНОГО МЫШЛЕНИЯ | ОГЛАВЛЕHИЕ VII ЭПИЛОГ Возможно, мы стоим у истоков
  • Р. Тарнас. ИСТОРИЯ ЗАПАДНОГО МЫШЛЕНИЯ | ОГЛАВЛЕHИЕ Хронологическая таблица Для античности даты приведены приблизительно2000
  • Р. Тарнас. ИСТОРИЯ ЗАПАДНОГО МЫШЛЕНИЯ | ОГЛАВЛЕHИЕ ПОСТМОДЕРНИСТСКОЕ МЫШЛЕНИЕ Каждую из великих эпохальных перемен
  • Р. Тарнас. ИСТОРИЯ ЗАПАДНОГО МЫШЛЕНИЯ | ОГЛАВЛЕHИЕ РОМАНТИЗМ И ЕГО СУДЬБА Две культуры Сложнейшая
  • Р. Тарнас. ИСТОРИЯ ЗАПАДНОГО МЫШЛЕНИЯ | ОГЛАВЛЕHИЕ VI ТРАНСФОРМАЦИЯ НОВОГО ВРЕМЕНИ Теперь, приближаясь к
  • Р. Тарнас. ИСТОРИЯ ЗАПАДНОГО МЫШЛЕНИЯ | ОГЛАВЛЕHИЕ IV ТРАНСФОРМАЦИЯ СРЕДНЕВЕКОВОЙ ЭПОХИ Теперь мы приступаем
  • Р. Тарнас. ИСТОРИЯ ЗАПАДНОГО МЫШЛЕНИЯ | ОГЛАВЛЕHИЕ ФИЛОСОФСКАЯ РЕВОЛЮЦИЯ На протяжении всех этих веков
  • Р. Тарнас. ИСТОРИЯ ЗАПАДНОГО МЫШЛЕНИЯ | ОГЛАВЛЕHИЕ V МИРОВОЗЗРЕНИЕ НОВОГО ВРЕМЕНИ Мировоззрение Нового времени
  • В. Р. Ирина, А. А. Новиков. В МИРЕ НАУЧНОЙ ИНТУИЦИИ | ВМЕСТО ЗАКЛЮЧЕНИЯ Завершая экскурс в мир научной интуиции,
  • В. Р. Ирина, А. А. Новиков. В МИРЕ НАУЧНОЙ ИНТУИЦИИ | ОСОБЕННОСТИ СОВРЕМЕННОЙ ИНТЕРПРЕТАЦИИ ФЕНОМЕНА ИНТУИЦИИ В последние годы



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       





    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь