Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/init.php on line 69 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/init.php on line 69 Warning: strtotime(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/vuzliborg/vuzliborg_news.php on line 53 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/vuzliborg/vuzliborg_news.php on line 54 Warning: strtotime(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/vuzliborg/vuzliborg_news.php on line 56 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/vuzliborg/vuzliborg_news.php on line 57
|
Глава 8. СТОЛКНОВЕНИЕ ТЕОРИЙ - Порядок из хаоса - И. Пригожин - Сочинения и рассказы1. Вероятность и необратимость Мы увидим, что почти всюду физик очистил свою науку от использования одностороннего времени, как бы сознавая, что эта идея привносит антропоморфный элемент, чуждый идеалам физики. Тем не менее в нескольких важных случаях одностороннее время и односторонняя причинность возникали, словно по волшебству, но, как будет показано, всякий раз в поддержку какой-нибудь ложной теории. Г. Н. Льюис[1] Закон монотонного возрастания энтропии - второе начало термодинамики - занимает, как мне кажется, высшее положение среди законов природы. Если кто-нибудь заметит вам, что ваша любимая теория Вселенной не согласуется с уравнениями Максвелла, то тем хуже для уравнений Максвелла. Если окажется, что ваша теория противоречит наблюдениям,- ну что же, и экспериментаторам случается ошибаться. Но если окажется, что ваша теория противоречит второму началу термодинамики, то у вас не останется ни малейшей надежды: ваша теория обречена на бесславный конец. А. С. Эддингтон[2] Предложенная Клаузиусом формулировка второго начала термодинамики сделала очевидным конфликт между термодинамикой и динамикой. Вряд ли найдется в физике другой такой вопрос, который бы обсуждался чаще и активнее, чем соотношение между термодинамикой и динамикой. Даже теперь, через сто пятьдесят лет после Клаузиуса, этот вопрос продолжает вызывать сильные эмоции. Никто не остается нейтральным в конфликте, затрагивающем самый смысл реальности и времени. Следует ли нам отказаться от динамики, матери современного естествознания, в пользу какого-нибудь варианта термодинамики? "Энергетисты", пользовавшиеся большим влиянием к конце XIX в., считали отказ oт динамики необходимым. Нельзя ли как-нибудь "спасти" динамику, сохранить второе начало и вместе с тем не нарушить величественное здание, воздвигнутое Ньютоном и его последователями? Какую роль может играть энтропия в мире, описываемом динамикой? Мы уже упоминали об ответе на этот вопрос, который был дан Больцманом. Знаменитое соотношение Больцмана S KlnP связывает энтропию и вероятность: энтропия возрастает потому, что возрастает вероятность. Сразу же подчеркнем, что в этом плане второе начало имело бы огромное практическое значение, но не было бы столь фундаментальным. В своей превосходной книге "Этот правый, левый мир" Мартин Гарднер пишет: "Некоторые явления идут в одну сторону не потому, что не могут идти в другую, а потому, что их протекание в обратом направлении весьма маловероятно"3. Усовершенствуя наши возможности измерять все менее и менее вероятные события, мы могли бы достичь такого положения, когда второе начало играло бы сколь угодно малую роль. Такой точки зрения придерживаются некоторые современные физики. Но Макс Планк считал иначе: "Нелепо было бы предполагать, что справедливость второго начала каким бы ни было образом зависит от большего или меньшего совершенства физиков и химиков в наблюдательном или экспериментальном искусстве. Содержанию второго начала нет дела до экспериментирования, оно гласит in nuce (в самом главном): "В природе существует величина, которая при всех изменениях, происходящих в природе, изменяется в одном и том же направлении". Выраженная в таком общем виде, эта теорема или верна, или не верна; но она остается тем, что она есть, независимо от того, существуют ли на Земле мыслящие и измеряющие существа и если они существуют, то умеют ли они контролировать подробности физических или химических процессов на один, два или сто десятичных знаков точнее, чем в настоящее время. Пределы для этого начала, если только они действительно существуют, необходимо должны находиться в той же области, в которой находится и его содержание, - в наблюдаемой природе, а не в наблюдающих людях. Обстоятельства нисколько не изменяются от того, что для вывода начала мы пользуемся человеческим опытом; для нас это вообще единственный путь для исследования законов природы"4. Взгляды Планка не получили особого распространения среди его современников. Как уже отмечалось, большинство физиков склонны были считать второе начало следствием приближенного описания, вторжения субъективных взглядов в точный мир физики. Эту точку зрения отражает, например, знаменитое высказывание Борна: "Необратимость есть результат вхождения элемента нашего незнания в основные законы физики"5. В настоящей главе мы намереваемся осветить некоторые основные этапы в развитии интерпретации второго начала. Прежде всего необходимо понять, почему эта проблема оказалась столь трудной. В гл. 9 мы изложим новый подход, из которого, как нам хотелось бы надеяться, читателю станут ясны и принципиальная новизна, и объективное значение второго начала. Вывод, к которому мы придем, совпадает с точкой зрения Планка. Мы покажем, что второе начало, отнюдь не разрушая величественное здание динамики, дополняет его существенно новым элементом. Прежде всего необходимо пояснить установленную Больцманом связь между вероятностью и энтропией. Воспользуемся для этого моделью урн, предложенной П. и Т. Эренфестами6. Рассмотрим N предметов (например, шаров), распределенных между двумя контейнерами (урнами) А и В. Предположим, что через одинаковые промежутки времени (например, через секунду) мы извлекаем наугад шар либо из урны А, либо из урны В и перекладываем его в другую урну. Пусть через п шагов в урне А находится k шаров, а в урне В - остальные N-k шаров. Тогда на (n+1)-ом шаге в урне A может оказаться либо k-1, либо k+1 шаров и вероятность перехода равна k/N для kRk-1 и 1-k/N для kRk+1. Предположим, что мы продолжаем извлекать шары наугад из урн и перекладывать их в другую урну. Мы ожидаем, что в результате перекладывания шаров установится наиболее вероятное их распределение по урнам в смысле Больцмана. Если число шаров N достаточно велико, то шары с наибольшей вероятностью распределятся между урнами А и В поровну: в каждой урне по N/2 шаров. В этом нетрудно убедиться, проделав соответствующие вычисления или выполнив экспериментальную проверку. Модель Эренфестов - простой пример марковского процесса (или цепи Маркова), названного так в честь выдающегося русского математика академика А. А. Маркова, одним из первых исследовавшего такие процессы (Пуанкаре был вторым). Кратко отличительную особенность марковских процессов можно сформулировать следующим образом: вероятности переходов однозначно определены и не зависят от предыстории системы. Цепи Маркова обладают замечательным свойством: их можно описать с помощью энтропии. Пусть P(k) - вероятность найти k шаров в урне A. Вероятности Р(К) можно сопоставить H-функцию, свойства которой в точности совпадают со свойствами энтропии, рассмотренной нами в гл. 4. На рис. 25 показано, как H-функция изменяется во времени. Мы видим, что она изменяется монотонно, как и энтропия изолированной системы. Правда, H-функция убывает, а энтропия S возрастает, но так происходит "по определению": H играет роль - S. Математический смысл H-функции заслуживает того, чтобы рассмотреть его более подробно: H-функция служит мерой отклонения вероятностей в данный момент времени от вероятностей в равновесном состоянии (когда число шаров в каждой урне равно N/2). Рассуждения, используемые в модели урн Эренфестов, допускают обобщение. Рассмотрим разбиение квадрата, т. е. разделим квадрат на некоторое число непересекающихся областей. Нас будет интересовать распределение частиц по квадрату. Пусть Р(k, t) - вероятность найти частицу в области k (в момент времени t), а Рравн(k) - вероятность найти частицу в области k в равновесных условиях. Предполагается, что, как и в модели урн, вероятности переходов существуют и однозначно определены. По определению, H-функция задается выражением Заметим, что в правую часть входит отношение P(k,t)/Pравн(k). Предположим, что мы разделили квадрат на восемь непересекающихся клеток и Рравн(k)=1/8. Пусть в момент времени t все частицы находятся в первой клетке. Тогда P(1,t)=1, a во всех остальных клетках вероятности P(k,t) равны нулю. Следовательно, H=ln(1/(1/8))=ln8. Со временем частицы распределяются по клеткам равномерно, и P(k,t)=Pравн(k)=1/8. H-функция при этом обращается в нуль. Можно показать, что H-функция убывает монотонно, как это изображено на рис. 25. (Доказательство этого утверждения приводится во всех учебниках по теории стохастических процессов.) Именно поэтому H-функция играет роль "негэнтропии" - S. Монотонное убывание H-функции имеет очень простой смысл: оно отражает и служит мерой прогрессирующего выравнивания неоднородностей в системе. Начальная информация утрачивается, и система эволюционирует от "порядка" к "беспорядку". Заметим, что марковский процесс включает в себя флуктуации. Это отчетливо видно на рис. 24. Подождав достаточно долго, мы могли бы вернуться в исходное состояние. Следует, однако, подчеркнуть, что речь идет о средних: монотонно убывающая Hм-функция может быть выражена через распределения вероятностей, а не через отдельные события. Именно распределение вероятностей эволюционирует необратимо (в модели Эренфестов функция распределения равномерно стремится к биномиальному распределению). Следовательно, на уровне функций распределения цепи Маркова приводят к однонаправленности во времени. Стрела времени характеризует различие между цепями Маркова и временной эволюцией в квантовой механике, в которой волновая функция (самым непосредственным образом связанная с вероятностями) эволюционирует во времени обратимо. Это также один из примеров тесной взаимосвязи между стохастическими процессами, например цепями Маркова, и необратимостью. Однако возрастание энтропии (или убывание H-функции) основывается не на стреле времени, заложенной в законах природы, а на нашем решении воспользоваться знанием, которым мы располагаем в настоящем, для предсказания поведения в будущем (но не в прошлом). Вот что говорит об этом в присущей ему лапидарной манере Гиббс: "Но хотя по отношению к математическим построениям различие между предшествующими и последующими событиями и может являться несущественным, по отношению к событиям реального мира дело обстоит совершенно иначе. В тех случаях, когда мы используем ансамбли для вычисления вероятностей событий, происходящих в реальном мире, нельзя забывать о том, что если вероятности последующих событий довольно часто можно определить, зная вероятности предшествующих, то лишь в весьма редких случаях удается определить вероятности предшествующих событий, зная вероятности последующих, ибо лишь чрезвычайно редко можно обоснованно исключить из рассмотрения априорную вероятность предшествующих событий"7. Асимметрия между прошлым и будущим - важный вопрос, бывший и продолжающий оставаться предметом оживленного обсуждения8. Теория вероятностей ориентирована во времени. Предсказание будущего отлично от восстановления хода событий задним числом. Если бы этим отличием все и ограничилось, то нам не оставалось бы ничего другого, как принять субъективную интерпретацию необратимости, так как различие между прошлым и будущим оказалось бы зависимым только от нас. Иначе говоря, при субъективной интерпретации необратимости (к тому же подкрепляемой сомнительной аналогией с теорией информации) "ответственность" за асимметрию во времени, характеризующую развитие системы, возлагается на наблюдателя. А так как наблюдатель не может "одним взглядом" определить положения и скорости всех частиц, образующих сложную систему, ему не известно мгновенное состояние системы, содержащее в себе ее прошлое и будущее; он не в состоянии постичь обратимый закон, который позволил бы предсказать развитие системы от одного момента времени к следующему. Наблюдатель не может также производить над системой такие манипуляции, какие производил максвелловский демон, способный разделять быстро и медленно движущиеся частицы и вынуждать систему к антитермодинамической эволюции от менее к более неоднородному распределению температуры9. Термодинамика по-прежнему остается наукой о сложных системах, но с указанной точки зрения единственной специфической особенностью сложных систем является то, что наше знание о них ограниченно и неопределенность со временем возрастает. Вместо того чтобы распознать в необратимости связующее звено между природой и наблюдателем, ученый вынужден признать, что природа лишь отражает его собственное незнание. Природа безответна. Необратимость, отнюдь не способствуя укреплению наших позиций в физическом мире, представляет собой не более чем отзвук человеческой деятельности и ее пределов. Против подобной точки зрения сразу же можно возразить. Приведенные выше интерпретации исходят из того, что термодинамика должна быть столь же универсальной, как и наше незнание. Но тогда должны существовать только необратимые процессы. Именно это и является камнем преткновения всех универсальных интерпретаций энтропии, уделяющих основное внимание нашему незнанию начальных (или граничных) условий. Необратимость - не универсальное свойство. Чтобы установить связь между динамикой и термодинамикой, необходим физический критерий, который позволил бы нам различать обратимые и необратимые процессы. К этому вопросу мы вернемся в гл. 9. А пока обратимся снова к истории науки и к пионерским работам Больцмана. 2. Больцмановский прорыв Свои основные результаты Больцман получил в 1872 г., за тридцать лет до того, как были открыты цепи Маркова. Больцман намеревался дать "механическую" интерпретацию энтропии. Иначе говоря, если в цепях Маркова вероятности перехода заданы извне (как в модели Эренфестов), их в действительности необходимо связать с динамическим поведением системы. Эта проблема настолько захватила Больцмана, что он посвятил ей большую часть своей научной жизни. В его "Статьях и речах" есть такие строки: "Если вы меня спросите относительно моего глубочайшего убеждения, назовут ли нынешний век железным веком или веком пара и электричества, я отвечу не задумываясь, что наш век будет называться веком... Дарвина"10. Идея эволюции неотразимо влекла к себе Больцмана. Его мечтой было стать Дарвином эволюции материи. Первый шаг на пути к механистической интерпретации энтропии состоял во введении в физическое описание некогда отброшенного представления о столкновении атомов и молекул и тем самым в создании базы для статистического описания. Этот шаг был сделан Клаузиусом и Максвеллом. Так как столкновения - явления дискретные, их можно сосчитать и оценить среднюю частоту. Мы можем также классифицировать столкновения, например отнести к одному классу столкновения, в результате которых рождается частица с заданной скоростью v, а к другому - столкновения, в результате которых частица со скоростью v исчезает, превращаясь в частицы с другими скоростями (т. е. разделить столкновения на прямые и обратные)11. Максвелла интересовало, можно ли указать такое состояние газа, в котором столкновения, непрестанно изменяющие скорости молекул, не сказываются более на эволюции распределения скоростей, т. е. на среднем числе молекул, движущихся с любой из скоростей. При каком распределении скоростей последствия различных столкновений в целом по ансамблю взаимно компенсируются? Максвелл показал, что такое особое состояние (состояние термодинамического равновесия) наступает, когда распределение скоростей принимает хорошо известную форму колоколообразной, или гауссовой, кривой - той самой, которую основатель "социальной физики" Кетле считал подлинным выражением случайности. Теория Максвелла позволяет весьма просто интерпретировать основные законы поведения газов. Повышение температуры соответствует увеличению средней скорости молекул и тем самым энергии, связанной с их движением. Эксперименты с высокой точностью подтвердили распределение Максвелла. Оно и поныне служит основой решения многочисленных задач в физической химии (например, при вычислении числа столкновений в реакционной смеси). Больцман, однако, вознамерился пойти дальше. Ему хотелось описывать не только состояние равновесия, но и эволюцию к равновесию, т. е. эволюцию к максвелловскому распределению. Он решил выявить молекулярный механизм, соответствующий возрастанию энтропии, механизм, вынуждающий систему стремиться к переходу из произвольного распределения скоростей к равновесному. Характерно, что Больцман подошел к решению проблемы физической эволюции не на уровне индивидуальных траекторий, а на уровне ансамбля молекул. Руководствуясь интуитивными соображениями, Больцман избрал подход, адекватный замыслу повторить в физике то, что Дарвин свершил в биологии, убедительно доказав: движущая сила биологической эволюции - естественный отбор - может быть определена не для отдельной особи, а лишь для популяции. Следовательно, естественный отбор - понятие статистическое. Полученный Больцманом результат допускает сравнительно простое описание. Эволюция функции распределения f(v,t) скоростей v в некоторой области пространства в момент времени t представима в виде суммы двух эффектов: число частиц, имеющих в момент времени t скорость v, изменяется в результате как свободного движения частиц, так и столкновений между ними. Изменение числа частиц вследствие свободного движения нетрудно вычислить с помощью классической динамики. Оригинальность метода Больцмана связана с оценкой второго эффекта: изменения числа частиц за счет столкновений. Чтобы избежать трудностей, неизбежно возникающих при прослеживании движения (не только свободного, но и при взаимодействии) по траекториям, Больцман воспользовался понятиями, аналогичными тем, которые были описаны в гл. 5 (при рассмотрении химических реакций), и занялся вычислением среднего числа столкновений, приводящих к рождению или уничтожению молекулы со скоростью v. Здесь снова мы имеем два процесса, действие которых противоположно: прямые и обратные столкновения. В результате прямого столкновения молекул со скоростями v' и v" возникает ("рождается") молекула со скоростью v. В результате обратного столкновения молекулы со скоростью v с молекулой со скоростью v'" скорость первой изменяется - молекула со скоростью v исчезает ("уничтожается"). Как и в случае химических реакций (см. гл. 5, разд. 1), частота столкновений считается пропорциональной произведению числа молекул, участвующих в столкновении. (Разумеется, исторически метод Больцмана (1872) предшествовал методу химической кинетики.) Результаты, полученные Больцманом, совершенно аналогичны результатам теории цепей Маркова. Мы снова вводим функцию HHH. На этот раз она относится к распределению скоростей f. Она представима в виде H= o flnfdv. Как и в предыдущем случае, H-функция может только убывать со временем до тех пор, пока не будет достигнуто равновесие и распределение скоростей не перейдет в распределение Максвелла. В последние годы многочисленные проверки монотонного убывания H-функции были проведены с помощью моделирования на ЭВМ. Все они подтвердили предсказание Больцмана. И поныне кинетическое уравнение Больцмана играет важную роль в физике газов. Оно позволяет вычислять коэффициенты переноса (например, коэффициенты теплопроводности и диффузии) в хорошем соответствии с экспериментальными данными. Но особенно велико достижение Больцмана с концептуальной точки зрения: различие между обратимыми и необратимыми процессами, лежащее, как мы видели, в основе второго начала термодинамики, Больцман низвел с макроскопического на микроскопический уровень. Изменение распределения скоростей из-за свободного движения молекул соответствует обратимой части, а вклад, вносимый в изменение распределения столкновениями, - необратимой части. Именно в этом и был, с точки зрения Больцмана, ключ к микроскопической интерпретации энтропии. Принцип молекулярной эволюции сформулирован! Легко понять, что это открытие обладало неотразимой привлекательностью для физиков, разделявших идеи Больцмана, в том числе Планка, Эйнштейна и Шредингера12. Больцмановский прорыв стал решающим этапом в формировании нового научного направления - физики процессов. Временную эволюцию в уравнении Больцмана больше не определяет гамильтониан, зависящий от типа сил. В больцмановском подходе движение порождают функции, связанные с процессом, например сечение рассеяния. Можно ли считать, что проблема необратимости решена и что теории Больцмана удалось свести энтропию к динамике? Ответ однозначен: нет, желанная цель не достигнута. Впрочем, вопрос этот столь важен, что заслуживает более подробного рассмотрения. 3. Критика больцмановской интерпретации Возражения против теории Больцмана появились сразу же после выхода его основной работы в 1872 г. Действительно ли Больцману удалось "вывести" необратимость из динамики? Каким образом обратимые законы движения по траекториям могут порождать необратимую эволюцию? Не противоречит ли кинетическое уравнение Больцмана динамике? Нетрудно видеть, что симметрия уравнения Больцмана не согласуется с симметрией классической механики. Мы уже видели, что в классической динамике обращение скорости (vR-v) приводит к такому же результату, как и обращение времени (tR-t). Это - основная симметрия классической динамики, и можно было бы надеяться, что кинетическое уравнение Больцмана, описывающее, как изменяется во времени функция распределения, обладает такой же симметрией. Но в действительности все обстоит иначе: вычисленный Больцманом столкновительный член инвариантен относительно обращения скорости. Эта несколько неожиданная инвариантность имеет простой физический смысл: в больцмановской картине нет никакого различия между столкновением, обращенным в будущее, и столкновением, обращенным в прошлое. Именно на этой идее основано возражение Пуанкаре против вывода уравнения Больцмана, предложенного самим Больцманом. Правильные вычисления не могут приводить к заключениям, противоречащим исходным допущениям13, 14. Но, как мы видели, симметрия кинетического уравнения, выведенного Больцманом для функции распределения, противоречит симметрии классической динамики. Следовательно, заключает Пуанкаре, Больцман не сумел "вывести" энтропию из динамики. Где-то в своих рассуждениях он ввел нечто новое, чуждое динамике. Следовательно, выведенное Больцманом уравнение в лучшем случае может рассматриваться лишь как феноменологическая модель, полезная, но не имеющая прямого отношения к динамике. Таково было также возражение Цермело (1896), выдвинутое против теории Больцмана. С другой стороны, возражение Лошмидта (1876) позволило установить границы применимости кинетической модели Больцмана. Лошмидт заметил, что модель Больцмана перестает выполняться после обращения скоростей, соответствующего преобразованию vR-v. Поясним суть возражения Лошмидта с помощью мысленного эксперимента. Предположим, что газ находится сначала в неравновесном состоянии и эволюционирует до момента времени t0. В момент времени t0 обратим все скорости. Тогда система вернется в начальное состояние. Следовательно, больцмановская энтропия при t=0 и t=2t0 должна быть одинакова. Число таких мысленных экспериментов легко можно было бы приумножить. Предположим, что при t=0 у нас имеется смесь водорода и кислорода. Через какое-то время образуется вода. Если обратить все скорости, то смесь вернется в исходное состояние: вода исчезнет, останутся только водород и кислород. Интересно, что в лаборатории или в численном моделировании обращение скоростей - вполне выполнимая операция. Например, на рис. 26 и 27 H-функция Больцмана вычислена для двухмерных твердых сфер (дисков). В начальный момент времени диски располагаются в узлах квадратной решетки с изотропным распределением cкоростей. Результаты вычислений совпадают с предсказаниями Больцмана. Если через пятьдесят или сто столкновений (в разреженном газе это соответствует 10-6с) обратить скорости, то получается новый ансамбль15. После обращения скоростей H-функция Больцмана уже не убывает, а возрастает. Аналогичная ситуация возникает при определенных условиях в реальных экспериментах со спиновым эхом и эхом в плазме: на ограниченных интервалах времени наблюдается "антитермодинамическое", в смысле Больцмана, поведение системы. Важно отметить, что эксперимент по обращению скоростей тем труднее, чем позже происходит обращение скоростей (т. е. чем больше время t0). Восстановить свое прошлое газ может лишь в том случае, если он "помнит" все, что с ним произошло в интервале времени от t=0 до t=t0. Для этого необходимо какое-то "хранилище" информации. В роли такого хранилища, или памяти, выступают корреляции между частицами. К вопросу о корреляциях мы вернемся в гл. 9. Пока же заметим, что именно это соотношение между корреляциями и столкновениями было недостающим звеном в рассуждениях Больцмана. Когда Лошмидт в полемике с Больцманом указал на это обстоятельство, Больцман вынужден был признать правоту своего оппонента: обратные столкновения "ликвидируют последствия" прямых столкновений и система должна возвращаться в начальное состояние. Следовательно, H-функция должна возрастать от конечного значения к начальному. Таким образом, обращение скоростей требует проведения различия между ситуациями, к которым рассуждения Больцмана применимы, и ситуациями, в которых те же рассуждения неверны. После того как эта проблема была поставлена (1894), выяснить природу ограничения оказалось. совсем не трудно16,17. Применимость статистического подхода Больцмана зависит от предположения о том, что перед столкновением молекулы ведут себя независимо друг от друга. Это предположение относительно начального состояния газа известно под названием гипотезы молекулярного хаоса. Начальное состояние, возникающее в результате обращения скоростей, не удовлетворяет гипотезе молекулярного хаоса. Если систему заставить эволюционировать "вспять во времени", то создается новая ситуация, аномальная в том смысле, что некоторым молекулам, сколь бы далеко друг от друга они ни находились в момент обращения скоростей, предопределено встретиться в заранее установленный момент времени и подвергнуться заранее установленному преобразованию скоростей. Обращение скоростей порождает высокоорганизованную систему, и гипотеза молекулярного хаоса перестает выполняться. Различные столкновения, как бы под влиянием предустановленной гармонии, порождают поведение газа, которое внешне вполне "целенаправленно". Но это еще не все. Что означает переход от порядка к хаосу? В предложенной Эренфестами модели урн ответ ясен: система эволюционирует до тех пор, пока распределение шаров не становится равномерным. В других случаях ситуация не столь проста. Мы можем воспользоваться численным моделированием и начать со случайного распределения взаимодействующих частиц. Со временем (на какое-то мгновение) может образоваться правильная решетка. Происходит ли в этом случае переход от порядка к хаосу? Ответ на этот вопрос далеко не очевиден. Для того чтобы понять порядок и хаос, нам необходимо прежде всего определить те объекты, к которым мы применяем эти понятия. Переход от динамики к термодинамике, как показал Больцман, совершается особенно легко в разреженных газах. Но в плотных системах, где молекулы взаимодействуют между собой, переход этот не столь очевиден. Именно из-за трудностей, возникающих при рассмотрении плотных систем с взаимодействующими частицами, яркая пионерская теория Больцмана осталась незавершенной. 4. Динамика и термодинамика - два различных мира Мы уже упоминали о том, что траектории несовместимы с понятием необратимости. Но поведение траекторий - отнюдь не единственный язык, на котором мы можем сформулировать динамику. В качестве альтернативы сошлемся на теорию ансамблей, развитую Гиббсом и Эйнштейном7,18 и представляющую особый интерес при изучении систем, состоящих из большого числа молекул. Существенно новым элементом в теории ансамблей Гиббса-Эйнштейна явилась возможность сформулировать динамическую теорию независимо от точного задания каких бы то ни было начальных условий. В теории ансамблей физические системы рассматриваются в фазовом пространстве. Динамическое состояние точечной частицы (материальной точки) определяется ее положением (вектором с тремя компонентами) и импульсом (тоже вектором с тремя компонентами). Такое состояние можно представить двумя точками (каждая из которых принадлежит "своему" трехмерному пространству) или одной точкой в шестимерном пространстве координат и импульсов. Это и есть фазовое пространство. Геометрическое представление динамических состояний одной точечной частицы обобщается на случай произвольной системы п частиц. Для того чтобы задать состояние такой системы, необходимо указать nr6 чисел, или точку в 6n-мерном фазовом пространстве. Эволюции во времени системы п частиц будет соответствовать траектория в фазовом пространстве. Мы уже говорили о том, что точные начальные условия макроскопической системы никогда не известны. Однако ничто не мешает нам представить систему ансамблем точек, т. е. "облаком" точек, соответствующих различным динамическим состояниям, совместимым с той информацией о системе, которой мы располагаем. Каждая область фазового пространства может содержать бесконечно много представляющих точек. Их плотность служит мерой вероятности найти рассматриваемую систему в данной области. Вместо того чтобы рассматривать бесконечно много дискретных точек, удобнее ввести непрерывное распределение представляющих точек в фазовом пространстве. Пусть r(q1, ..., q3n, p1, ..., p3n) - плотность распределения представляющих точек в фазовом пространстве, где q1, ..., q3n - координаты п точек, a p1, ..., p3n - импульсы тех же точек (каждая точка имеет три координаты и три импульса). Плотность r есть плотность вероятности найти динамическую систему в окрестности точки q1, ..., q3n, p1, ..., p3n фазового пространства. При таком подходе плотность r может показаться идеализацией, искусственной конструкцией, а траектория точки в фазовом пространстве "непосредственно" соответствующей описанию "естественного" поведения системы. Но в действительности идеализацией является точка, а не плотность. Дело в том, что начальное состояние никогда не бывает известно с бесконечной степенью точности, позволяющей стянуть область в фазовом пространстве в отдельную точку. Мы можем лишь определить ансамбль траекторий, выходящих из ансамбля представляющих точек, соответствующих тому, что нам известно относительно начального состояния системы. Функция плотности r отражает уровень наших знаний о системе: чем точнее знания, тем меньше область в фазовом пространстве, на которой плотность отлична от нуля, т. е. та область, где может находиться система. Если бы плотность была равномерно распределена по всему фазовому пространству, то утверждать что-либо относительно состояния системы было бы невозможно. Она могла бы находиться в любом из состояний, совместимых с ее динамической структурой. При таком подходе точка соответствует максимуму знания, которым мы можем располагать о системе. Такой максимум есть результат предельного перехода, все возрастающей точности нашего знания. Как мы увидим в гл. 9, фундаментальная проблема состоит в том, чтобы выяснить, какой предельный переход реально осуществим. Непрестанное повышение точности означает, что от одной области в фазовом пространстве, где плотность r отлична от нуля, мы переходим к другой, меньшей, которая содержится в первой. Такое стягивание мы можем продолжать до тех пор, пока область, содержащая систему, не станет сколь угодно малой. Но при этом, как мы увидим в дальнейшем, необходимо соблюдать осторожность: "сколь угодно малая" не означает "нулевая", и априори ниоткуда не следует, что наш предельный переход непременно приведет к непротиворечивому предсказанию отдельной однозначно определенной траектории. Теория ансамблей Гиббса-Эйнштейна - естественное продолжение теории Больцмана. Функцию плотности r в фазовом пространстве можно рассматривать как аналог функции распределения скоростей f, которую использовал Больцман. Но по своему физическому содержанию PPP "богаче", чем f. Функция плотности r так же, как и f, определяет распределение скоростей, но, помимо этого, r содержит и другую информацию, в частности вероятность найти две частицы на определенном расстоянии друг от друга. В функцию плотности PPP входит и все необходимое для определения корреляций между частицами, о которых шла речь в предыдущем разделе. Более того, r содержит полную информацию о всех статистических свойствах системы п тел. Опишем теперь эволюцию функции плотности в фазовом пространстве. На первый взгляд это еще более дерзкая задача, чем та, которую поставил перед собой Больцман: описание временной эволюции функции распределения скоростей. Но это не так. Канонические уравнения Гамильтона, о которых шла речь в гл. 2, позволяют нам получить точное эволюционное уравнение для r без дальнейших приближений. Это так называемое уравнение Лиувилля, к которому мы еще вернемся в гл. 9. Пока же отметим лишь одно важное следствие из гамильтоновой динамики: плотность r эволюционирует в фазовом пространстве как несжимаемая жидкость (если представляющие точки в какой-то момент времени занимают в фазовом пространстве область объемом V, то объем области остается постоянным во времени). Форма области может изменяться произвольно, но объем ее при всех деформациях сохраняется. Таким образом, теория ансамблей Гиббса открывает возможность строгого сочетания статистического подхода (исследования "популяции", описываемой плотностью r) и законов динамики. Она допускает также более точное представление состояния термодинамического равновесия. Например, в случае изолированной системы ансамбль представляющих точек соответствует системам с одной и той же энергией Е. Плотность r отлична от нуля только на микроканонической поверхности в фазовом пространстве, отвечающей заданному значению энергии. Первоначально плотность r может быть распределена по микроканонической поверхности произвольно. В состоянии равновесия плотность r перестает изменяться во времени и не должна зависеть от выбора начального состояния. Следовательно, приближение к равновесному состоянию имеет простой смысл в терминах эволюции плотности r: функция распределения r становится постоянной на всей микроканонической поверхности. Каждая точка такой поверхности с равной вероятностью может представлять систему. Это соответствует микроканоническому ансамблю. Приближает ли теория ансамблей хоть сколько-нибудь к решению проблемы необратимости? Теория Больцмана описывает термодинамическую энтропию с помощью функции распределения скоростей f. Для этого Больцману пришлось ввести свою H-функцию. Как мы уже знаем, система эволюционирует во времени до тех пор, пока распределение скоростей не становится максвелловским, и на протяжении всей эволюции H функция монотонно убывает. Можно ли теперь в более общем плане принять за основу возрастания энтропии эволюцию распределения r в фазовом пространстве к микроканоническому ансамблю? Достаточно ли для этого вместо больцмановской функции H, выраженной через f, взять гиббсовскую функцию HG, зависящую точно таким же образом от r? К сожалению, ответы на оба вопроса отрицательны. Если мы рассмотрим уравнение Лиувилля, описывающее эволюцию плотности r в фазовом пространстве, и учтем сохранение объема "фазовой жидкости", о котором уже упоминалось, то вывод последует незамедлительно: функция HG постоянна и поэтому не может быть аналогом энтропии. По отношению к теории Больцмана последнее обстоятельство кажется не столько продвижением вперед, сколько шагом назад! Несмотря на этот негативный аспект, вывод Гиббса остается весьма важным. Мы уже неоднократно отмечали расплывчатость и. неоднозначность понятий порядка и хаоса. Постоянство функции HG свидетельствует о том, что в рамках динамической теории не существует никакого изменения порядка! "Информация", выражаемая функцией HG, остается постоянной. Сохранение информации можно понимать следующим образом: столкновения порождают корреляции. В результате столкновений скорости рандомизируются, становятся случайными, что позволяет нам описывать весь процесс как переход от порядка к хаосу. Вместе с тем появление корреляции в результате столкновений свидетельствует об обратном процессе: о переходе от хаоса к порядку! Теория Гиббса показывает, что оба процесса - прямой и обратный - в точности компенсируют друг друга. Итак, мы приходим к важному выводу: независимо от выбора представления (будь то движение по траекториям или теория ансамблей Гиббса-Эйнштейна) нам не удастся построить теорию необратимых процессов, которая выполнялась бы для любой системы, удовлетворяющей законам классической (или квантовой) механики. У нас нет даже способа говорить о переходе от порядка к хаосу! Как следует понимать эти отрицательные результаты? Любая ли теория необратимых процессов находится в неразрешимом конфликте с механикой (классической или квантовой)? Нередко высказывалось предложение включить космологические члены, которые учитывали бы влияние расширяющейся Вселенной на уравнения движения и порождали бы стрелу времени. С подобной идеей трудно согласиться. С одной стороны, не вполне ясно, как вводить эти космологические члены. С другой стороны, точные динамические эксперименты, по-видимому, отвергают существование космологических членов, по крайней мере если говорить о земных масштабах, которые мы и рассматриваем в данном случае (достаточно вспомнить о прецизионных космических экспериментах, поставленных с помощью искусственных спутников Земли и подтвердивших с высокой точностью уравнения Ньютона). Вместе с тем, как уже неоднократно подчеркивалось, мы живем в плюралистическом мире, в котором обратимые и необратимые процессы сосуществуют в одной и той же расширяющейся Вселенной. Еще более радикальный вывод состоит в том, чтобы встать на точку зрения Эйнштейна и считать время как необратимость иллюзией, которая никогда не найдет себе места в объективном мире физики. К счастью, существует другой выход, который мы подробно рассмотрим в гл. 9. Необратимость, как мы неоднократно отмечали, не является универсальным свойством, а это означает, что не следует ожидать общего вывода необратимости из динамики. Теория ансамблей Гиббса вводит лишь один дополнительный, но очень важный элемент по сравнению с динамикой траекторий: наше незнание точных начальных условий. Маловероятно, чтобы одно лишь это незнание приводило к необратимости. Таким образом, не следует удивляться, что нас постигла неудача. Ведь мы так и не сформулировали те специфические особенности, которыми должна обладать динамическая система для того, чтобы приводить к необратимым процессам. Почему так много ученых с готовностью приняли субъективную интерпретацию необратимости? Возможно, привлекательность субъективной интерпретации отчасти объясняется тем, что, как мы знаем, необратимое возрастание энтропии сначала связывалось с несовершенством манипуляций, производимых над системой, и неполнотой нашего контроля над идеально обратимыми операциями. Но субъективная интерпретация становится явно абсурдной, если мы оставляем в стороне малосущественные ассоциации с технологическими проблемами. Не следует забывать также о том историческом контексте, в котором второе начало термодинамики обрело интерпретацию стрелы времени. Если принять субъективную интерпретацию, то химическое сродство, теплопроводность, вязкость, т. е. все свойства, связанные с необратимым производством энтропии, окажутся зависимыми от наблюдателя. Кроме того, та роль, которую играют в биологии явления организации, связанные с необратимостью, не позволяет считать их простыми иллюзиями, обусловленными нашим незнанием. Разве мы сами, живые существа, способные наблюдать и производить манипуляции, - не более чем фикции, вызванные несовершенством наших органов чувств? Разве различие между жизнью и смертью - иллюзия? Таким образом, последние достижения термодинамической теории увеличили остроту конфликта между динамикой и термодинамикой. Попытки свести результаты термодинамики к аппроксимациям, обусловленным несовершенством нашего знания, оказались несостоятельными, когда была понята конструктивная роль энтропии и открыта возможность усиления флуктуаций. Наоборот, динамику трудно отвергнуть во имя необратимости: в движении идеального маятника нет никакой необратимости. Существование двух конфликтующих миров - мира траекторий и мира процессов - не вызывает сомнений. Мы не можем отрицать существование одного из них, утверждая существование другого. В какой-то степени имеется определенная аналогия между этим конфликтом и тем, с которым связано зарождение диалектического материализма. В гл. 5 и 6 мы описали природу, которую можно было бы назвать "исторической", т. е. способной к развитию и инновации. Идея истории природы как неотъемлемой составной части материализма принадлежит К. Марксу и была более подробно развита Ф. Энгельсом. Таким образом, последние события в физике, в частности открытие конструктивной роли необратимости, поставили в естественных науках вопрос, который давно задавали материалисты. Для них понимание природы означало понимание ее как способной порождать человека и человеческое общество. Кроме того, в то время, когда Энгельс писал "Диалектику природы", физические науки отвергали механистическое мировоззрение и склонялись ближе к идее исторического развития природы. Энгельс упоминает три фундаментальных открытия: энергии и законов, уп-равляющих ее качественными преобразованиями; клетки как основы всех органических существ и открытие Дарвином эволюции видов. Исходя из этих трех великих открытий, Энгельс пришел к выводу, что механистическое мировоззрение мертво. Вместе с тем механицизм ставил перед диалектическим материализмом ряд принципиальных и далеко не простых вопросов. Каковы соотношения между общими законами диалектики и столь же универсальными законами механического движения? Становятся ли последние неприменимыми после того, как достигнута определенная стадия развития, или же они просто неверны или неполны? Нельзя еще раз не задать и наш предыдущий вопрос: как вообще могут быть связаны между собой мир процессов и мир траекторий [19]? Но сколь ни легко критиковать субъективную интерпретацию необратимости и отмечать еe слабые стороны, выйти за ее рамки и сформулировать "объективную" теорию необратимых процессов необычайно трудно. В истории попыток создания этого предмета звучат и трагические ноты. Многие склонны считать, что именно отчетливое понимание принципиальных трудностей, стоящих на пути к созданию объективной теории необратимых процессов и казавшихся непреодолимыми, привело Больцмана в 1906 г. к самоубийству. 5. Больцман и стрела времени Как мы уже упоминали, Больцман сначала полагал, будто ему удалось доказать, что стрела времени определяется эволюцией динамических систем от менее вероятных состояний к более вероятным или от состояний с меньшим числом комплексов к состояниям с большим числом комплексов (число комплексов монотонно возрастает со временем). Обсуждали мы и возражения Пуанкаре и Цермело. Пуанкаре доказал, что всякая замкнутая динамическая система со временем возвращается в сколь угодно малую окрестность своего исходного состояния. Иначе говоря, все состояния динамической системы так или иначе повторимы. Могла ли в таком случае стрела времени быть связана с возрастанием энтропии? После мучительных размышлений Больцман изменил свою позицию. Он оставил попытки доказать существование объективной стрелы времени и выдвинул новую идею, которая в известном смысле сводила закон возрастания энтропии к тавтологии. Больцман считал теперь, что стрела времени - не более чем соглашение, водимое нами (или, быть может, всеми живыми существами) в мир, в котором не существует объективного различия между прошлым и будущим. Вот что писал, например, Больцман в ответ на критику Цермело: "Имеется выбор между двумя представлениями. Можно предположить, что вся Вселенная сейчас находится в некотором весьма невероятном состоянии. Но можно мыслить зоны - промежутки времени, по истечении которых снова наступают невероятные события, - такими же крошечными по сравнению с продолжительностью существования Вселенной, как расстояние от Земли до Сириуса ничтожно по сравнению с ее размерами. Тогда во всей Вселенной (которая в противном случае повсюду находилась бы в тепловом равновесии, т. е. была бы мертвой) имеются относительно небольшие участки порядка масштаба нашей звездной системы (мы будем называть их отдельными мирами), которые в течение относительно небольших по сравнению с эоном промежутков времени значительно отклоняются от теплового равновесия, а именно: среди этих миров одинаково часто встречаются состояния, вероятности которых возрастают и уменьшаются. Таким образом, для Вселенной в целом два направления времени являются неразличимыми, так как в пространстве нет верха и низа. Но точно так же, как мы в некотором определенном месте земной поверхности называем "низом" направление к центру Земли, так и живое существо, которое находится в определенной временной фазе одного из таких отдельных миров, назовет направление времени, ведущее к более невероятным состояниям, по-другому, чем противоположное (первое - как направленное к "прошлому", к началу последнее - к "будущему", к концу), и вследствие этого названия будет обнаруживать "начало" для этих малых областей, выделенных из Вселенной, всегда в некотором невероятном состоянии. Этот метод представляется мне единственным, с помощью которого можно осмыслить второе начало, тепловую смерть каждого отдельного мира без того, чтобы предполагать одностороннее изменение всей Вселенной от некоторого определенного начального состояния по направлению к некоторому итоговому конечному состоянию"[20]. Идея Больцмана наглядно изображена на диаграмме, предложенной Карлом Поппером (рис. 29). Cтрела времени столь же произвольна, как и вертикальное направление, определяемое гравитационным полем. Комментируя Больцмана, Поппер заметил следующее: "Идея Больцмана поражает своей смелостью и красотой. Вместе с тем она заведомо неприемлема, по крайней мере для реалиста. Она объявляет одностороннее изменение иллюзией. В таком случае трагическую гибель Хиросимы также следует считать иллюзией. Но тогда и весь наш мир становится иллюзией вместе со всеми нашими попытками узнать о нем нечто новое. Тем самым идея Больцмана (как и любой идеализм) обрекает себя на поражение. Идеалистическая гипотеза Больцмана имеет характер ad hoc гипотезы и противоречит его собственной реалистической и не без страстности отстаиваемой антиидеалистической философии и неутолимой жажде знания"[21]. Мы полностью согласны с комментариями Поппера и считаем, что настало время опять вернуться к задаче, которую некогда ставил перед собой Больцман. Двадцатый век стал свидетелем великой концептуальной революции в физике, что не могло не породит новые надежды на объединение динамики и термодинамики. Ныне мы вступаем в новую эру в истории времени, эру, в которой бытие и становление могут быть объединены в непротиворечивую картину. Категория: Библиотека » Философия Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|