|
ЛОГИЧЕСКИЕ ОПЕРАЦИИлогич. операторы, логич. связки, функции, преобразующие выражения логич. исчислений (формальных логич. систем); подразделяются на пропозициональные (сентенциональные) связки, с помощью к-рых образуются выражения логики высказываний, и кванторы, введение к-рых позволяет расширить логику высказываний до логики предикатов. Л. о. позволяют строить сложные высказывания из нек-рых элементарных, подобно тому как союзы, союзные слова и обороты служат для построения сложных предложений из простых в естеств. языках. Напр., в классич. двузначной логике, в к-рой высказывания могут быть только либо истинными, либо ложными, Л. о. конъюнкции интерпретируется как союз «и» и его многочисл. синонимы и оттенки («а», «да», «но», «хотя», «между тем как», «а также», «кроме того» и т. д.); дизъюнкции- как один из смыслов («неразделительный») союза «или»; отрицание - как частица «не» и её языковые эквиваленты; импликации- примерно как обороты «если ..., то ...» и «из... следует...» или глагол «влечёт»; эквиваленции - как оборот «тогда и только тогда, когда» и его синонимы и т. п. Соответствие это не взаимнооднозначно и приблизительно; поэтому точные определения Л. о. задаются не «переводами» их на естеств. языки, а либо посредством т. н. истинностных таблиц (или таблиц истинности), указывающих, какое из двух истинностных значений - «и» («истина») или «л» («ложь») - принимает результат применения данной Л. о. к нек-рым исходным высказываниям при каждом конкретном распределении истинностных значений этих исходных высказываний, либо заданиемнадлежащих постулатов (логич. аксиом и правил вывода). Изоморфная (см. Изоморфизм и гомоморфизм) интерпретируемость классич. логики высказываний в терминах логики классов обусловливает существование теоретико-множеств. операций, аналогичных каждой из её Л. о. в том смысле, что они подчиняются одним и тем же взаимным соотношениям и образуют булевы алгебры (соответственно алгебру высказываний и алгебру множеств; см. Алгебра логики).
Категория: Словари и энциклопедии » Философия » Советский философский словарь, 1974 г. Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|