|
ГЕНЦЕН Герхард(24 ноября 1909, Грейфсвальд, Померания— 4 августа 1945, Прага)—немецкий математик и логик. Детство провел и учился в начальной школе на о. Рюнген в Балтийском море. В 1920 переехал с матерью (отец погиб в 1-й мировой войне) в Страслунд. Окончив местную гимназию с высшим знаком отличия, получил стипендию немецкого студенческого фонда, позволившую ему продолжить академическое образование. После двух семестров учебы в Грейфсвальдском университете, 22 апреля 1929 был принят в Гетгингенский университет, в котором занимался два семестра, затем один семестр—в Мюнхене, один—в Берлине и снова вернулся в Геттинген, где работал под руководством Г. Вейля. Летом 1933 получил докторскую степень по математике. После недолгого перерыва в научной работе, связанного с ухудшением здоровья, Генцена снова приглашают в Геттинген в качестве ассистента Гильберта, там он работал и после ухода последнего на пенсию. В начале 2-й мировой войны был призван в армию, но через два года демобилизован по болезни. После выздоровления вернулся в Гетгингенский университет, где в 1942 получил степень доктора философии. Осенью 1943 по приглашению директора Математического института Немецкого университета в Праге Генцен занял должность доцента этого университета и преподавал до 5 мая 1945, когда был арестован новыми властями. Скончался в Праге в тюремной камере 4 августа 1945. Генцен работал в основном в русле фанатизма в математике. Его научные интересы относятся к области математической логики и оснований математики. Его труды, опубликованные в 1932—34, посвящены анализу логических выводов, доказательству непротиворечивости элементарной теории чисел и простой теории типов, а также анализу соотношения между интуиционистской и классической арифметикой, понятию бесконечности в математике и проблеме существования независимых аксиом для бесконечных систем предложений. Наибольший вклад Генцен внес в доказательств теорию. Самой известной его работой является «Исследование логических выводов» (1935, рус. пер. 1967), в которой представлены новые формы построения классической и интуиционистской логик в виде систем натурального вывода и исчислений секвенций, а также фундаментальный результат современной математической логики—доказана теорема об устранении сечения (элиминаштнная теорема). Фактически, эта работа положила начало новому направлению в теории доказательств. Глубокие и методологически перспективные идеи Генцена, относящиеся к понятиям доказуемости и недоказуемости в математике и логике, к способам обоснования непротиворечивости формальных теорий, стимулировали множество новых исследований по основаниям математики и связанных с этим фундаментальных философских проблем. По свидетельству одного из его друзей, Генцен незадолго до своей смерти выражал полную уверенность в том, что может представить доказательство непротиворечивости математического анализа. Соч.; Uber die Existenz unabhangiger Axiomensysteme zu unendlichen Satzsystemen.—«Mathematische Annalen», 107 (1932); Uber das Verhaltnis zwischen intuitionistischer und Klassischer Arithmetik. Galley Proof.—Ibid. (1933), received on 15lh March 1933; Untersuchungen uber das logische Schliessen.—«Mathematische Zeitschrift», (1935); Die Widerspruchsfreiheit der reinen Zahlentheorie.—«Mathematische Annalen», 112 (1936); Appendix: Galley Proof.—Ibid. (1935), received n 1th August 1935; Die gegenwartige Lage in der mathematischen Grundlagenforschung.—Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, New Series, N 4, Lp. (Hirzel), (1938); Neue Fassung des Widerspruchsfreiheitsbeweises fiir die reine Zahlentheorie.— Ibid.; Collected Papers of Gerhard Gentzen, ed. by M. E. Szabo. Studies in Logic and the Foudations of Mathematics. Amst.— L., 1969; Исследования логических выводов.— В кн.: Математическая теория логического вывода. М., 1967; Непротиворечивость чистой теории чисел.—Там же; Новое изложение доказательства непротиворечивости для чистой теории чисел,—Там же. П. И. Быстрое Категория: Словари и энциклопедии » Философия » Новая философская энциклопедия, 2003 г. Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|