6.1. ИНФОРМАЦИОННАЯ СРЕДА ПОЛЕТА И ФОРМИРОВАНИЕ ОБРАЗА ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ САМОЛЕТА - Образ в системе психической регуляции деятельности - Ломов Б.Ф.

- Оглавление -


Как было показано в главе 1, образ пространственного положения — один из основных компонентов образа полета. Была отмечена также специфика условий, в которых он формируется, в частности, указано на существенные различия пространственной ориентировки на земле и в полете.

Напомним, что началом системы отсчета при ориентировке на земле является направление гравитации — гравитационная вертикаль. В процессе жизни индивида (уже на раннем ее этапе) формируется функциональный орган, представляющий собой системный механизм межанализаторной интеграции, который и обеспечивает целостное и вместе с тем дифференцированное чувственное отражение пространства. Ведущая роль в этом механизме принадлежит связям зрительного, стато–кинетического и проприоцептивного анализаторов. Именно благодаря этим связям упорядочиваются и закрепляются отношения между направлением силы тяжести (отражаемой статокинетическим и проприоцептивным анализаторами) и расположением линии горизонта (отражаемого зрительно). Складывается система координат, относительно которой оцениваются пространственные характеристики всех поступающих к человеку сигналов.

В условиях полета возникает рассогласование между сложившимся функциональным органом чувственного отражения пространства и актуальными воздействиями на органы чувств: происходит как бы подмена системы координат, ориентированных относительно направления гравитации, другой системой, ориентированной относительно направления действия перегрузки, а это закономерно порождает иллюзии.

С точки зрения реальности такой подмены и возможности ее элиминации для летчика существенно различаются визуальный и слепой (приборный) полеты. И в том и в другом случае к летчику поступает как инструментальная, так и неинструментальная информация, но ее соотношение различно; по–разному также формируется образ пространственного положения.

Обобщая, можно сказать, что в визуальном и приборном полетах различны информационные среды в зависимости от той роли, которую в той и другой среде играет визуальная информация.

В визуальном полете летчик зрительно воспринимает не только приборную информацию (инструментальную), но и естественную обстановку (неинструментальная информация): вид поверхности земли, горизонта. И это имеет принципиальное значение для формирования пространственного образа в первую очередь потому, что позволяет сопоставлять видимую картину с показаниями приборов и адекватно оценивать действительное положение дел.

Конечно, неинструментальные визуальные сигналы, будучи естественными, отличаются от тех, которые обеспечивают ориентировку человека на земле: видимая из кабины земная поверхность кажется перемещающейся относительно самолета, горизонт — качающимся при кренах. Однако в процессе визуальных полетов в значительной мере благодаря накапливаемому опыту сопоставления неинструментальных сигналов, формирующих уровень сенсорно–перцептивного отражения, и инструментальных, адресуемых вербально–логическому уровню, у летчика складывается новая система связей между анализаторами, новый функциональный орган отражения пространства. В его восприятии пространство отражается адекватно: земля, наземные ориентиры и естественный горизонт в перцептивном образе представлены как неподвижные, т.е. для ориентировки в пространстве летчик начинает использовать ту же геоцентрическую систему координат, которая сформировалась в условиях ориентировки на землю. Его образ пространства можно назвать геоцентрическим.

Информационная среда визуального полета не сводится к зрительным сигналам. Она включает поток проприо– и интероцептивных сигналов (о них подробнее речь пойдет ниже). В визуальном полете все они, будучи подчинены зрительной информации, используются для формирования полноценного образа полета, в частности одного из его существенных компонентов — чувства самолета.

Визуальный компонент естественной информации главенствует в формировании адекватного содержания образа. 112

В полете по приборам формирование образа пространственного положения обеспечивается посредством восприятия и преобразования инструментальной зрительной информации, поступающей от группы пилотажно–навигационных приборов, в частности от авиагоризонта, индицирующего перемещение самолета вокруг продольной (крен) и поперечной (тангаж) осей самолета.

Совокупность показаний приборов позволяет представить летчику пространственное положение самолета. При этом формирование образа требует умственных преобразований воспринимаемых сигналов: специфической трансформации восприятия знаковой модели в наглядное представление.

Инструментальная визуальная информация призвана поддерживать образ—представления о пространственном положении самолета в условиях воздействия неинструментальных интеро– и проприоцептивных сигналов, которые могут нести ложную информацию о положении самолета.

Влияние этих сигналов на действия летчиков двойственно: повышение надежности в одних случаях и искажение образа пространственного положения в других. К сожалению, обычно подчеркивается только их негативная сторона; молодых летчиков предупреждают о вредности интеро– и проприоцептивных сигналов. Но, как было показано в первой главе, они играют существенную роль в формировании чувства самолета; без них это чувство просто не может возникнуть. Рассмотрим специально ту часть информационной среды, которая образуется неинструментальными сигналами.

Заметим, что к этим сигналам относится информация, которая хотя и не представлена на технических средствах отображения, зато имеет свой конкретный физический носитель: силы инерции, внекабинные ориентиры, звуки, запахи и т.д.

Психологическая суть этих сигналов в том, что они составляют исходную основу психического отражения в целом, как бы насыщают образ полета чувственным содержанием.

Особенное место занимает неинструментальная информация в процессе построения управляющих движений и их коррекции. Напомним, что в понятие "построение движения" как раз и вкладывается вся система взаимоотношений между афферентными ансамблями, которые участвуют в обеспечении требуемой коррекции для афферентных импульсов.

Специфика построения движений летчиком состоит в том, что в процессе пилотирования возникающие неинструментальные сигналы типа угловых, линейных ускорений, тянущих и давящих усилий адресуются разным анализаторам и по–разному участвуют в формировании образов как предстоящего действия, так и пространства.

Рассмотрим на качественном уровне специфику неинструментальных сигналов (исключая зрительные, о которых уже говорилось), участвующих в формировании образа как в визуальном, так и в слепом полетах. Вначале остановимся на проприоцептивном анализаторе и особенностях его функционирования в полете. Как известно, этот анализатор состоит из двух частей: вестибулярного и двигательного; последний на периферии представлен механорецепторами, заложенными в мышцах, связках, сухожилиях, хрящах, суставах.

При изменении направления полета возникающие нагрузки определенным образом деформируют ткани и кожу головы, спины, бедер, седалища, голеней и т.д. Кожно–механические рецепторы чутко реагируют на физический носитель сигнала — давление. Одновременно инерционные силы, возникающие при изменениях направления траектории полета, воздействуют не только на рецепторное поле кожи (тельца Мейснера, Паччини, Гольджи–Мацциони), но и на мышечные веретена (гамма–волокно); мышечные веретена представляют собой рецептор, включенный как в афферентную, так и в эфферентную систему [149]. Это означает, что физические неинструментальные сигналы (например, во время пилотажа) активируют одновременно и сократительные мышечные волокна (мышечная защита от принудительного перераспределения крови), и собственно проприорецепторы, формирующие мышечное чувство.

Напомним еще раз положение И.М. Сеченова о роли "чувствования" ("темного чувства") в движении; о том, что чувствование повсюду имеет значение регулятора движения. Другими словами, ощущение вызывает движение и видоизменяет его по силе и направлению [135].

Желаем мы того или нет, на летчика (курсанта) объективно воздействуют проприоцептивные сигналы, связанные с а) состоянием управляемого объекта, б) контролем за изменением этого состояния, в) оценкой достигнутого результата управления в пространстве и времени. Другими словами, неинструментальные сигналы выполняют важнейшую роль в формировании афферентного синтеза всего комплекса сигналов, поступающих из внешней среды, который, по мнению И.П. Павлова, является необходимым условием высшего регулирования функций организма [116]. Казалось бы само собой разумеющимся, что при разработке методов обучения летчиков целесообразно и даже необходимо опираться на механизм работы двигательного аппарата и проприоцептивного анализатора. Но летная практика показывает, что мышечные (кинестетические, мышечно–суставные) ощущения под влиянием тех же сил инерции могут создавать ложные впечатления при оценке силы, скорости, длительности движения или углового перемещения суставов. В частности, под влиянием перегрузки в направлении голова—таз (3—5 ед.) при воздействии в течение 20—30 с изменяется функционирование двигательного аппарата следующим образом: увеличивается на 0,2—0,8 с латентное время реакции, изменяется величина заданного мышечного усилия (в сторону увеличения) на 5—20 кг, изменяется дозируемая амплитуда движения (в сторону увеличения) на 2—10 мм, появляется ошибка слежения на 20—40% от заданного [63]. Естественно, подобные факты дают повод для пессимистического отношения к разработке рекомендаций по использованию неинструментальных сигналов в практике обучения летного состава.

Таблица 6.1

Характеристика отношений к ощущению перегрузки при выполнении фигур сложного пилотажа

Класс

Число летчиков

Налет

Предпочитают пилотировать по собственным ощущениям

 

 

 

Обычный пилотаж, %

Резкие маневры, %

1

28

2100

90

90

2

36

1300

55

100

3

34

500

76

95

Но такая позиция — результат одностороннего подхода к вопросу летной подготовки. Если бы пилотирование сводилось только к реакциям на стимулы, ее можно было бы принять. Но в действительности оно представляет собой весьма сложную сознательную деятельность. Летчик не просто реагирует на сигналы; он планирует, конструирует как стратегию будущего своего поведения, так и каждый отдельно взятый двигательный акт. Именно признание того, что движение, особенно при управлении самолетом, представляет собой смысловой факт, регулируемый образом—целью, дает основание более активно опираться на "летное чувство" при обучении летчиков. А в формировании этого чувства проприоцепции принадлежит важнейшая роль. Летное чувство с психологической точки зрения обеспечивает самый сложный процесс: совмещенность действий, так как именно проприоцептивная ориентировка способствует не только высвобождению визуального внимания, но и своевременности сосредоточения его на сигналах об отклонениях управляемого объекта от заданного режима [70].

Рассматривая, к примеру, такой неинструментальный сигнал, как давление, нужно констатировать, что он служит стимулом для формирования двигательного акта, а кинестетические клетки коры, где происходит афферентный синтез, определяют его в качестве пускового или тормозного.

Вычленение из неинструментальных сигналов информации для нужд управленческого акта (независимо от исполнительных, гностических или корректирующих его компонентов) является, по нашему мнению, содержательной стороной летного чувства. Такое вычленение как процесс представляет собой в некотором роде актуализацию опыта. Ниже мы приводим ряд фактических материалов, подтверждающих ход наших рассуждений.

А.А. Вороной был проведен специальный опрос о роли неинструментальных сигналов в процессе пилотирования самолетов. Некоторые данные приводятся в табл. 6.1, 6.2.

Характерным примером использования неинструментальных сигналов для построений управляющего движения являются факты, полученные В. В. Давыдовым и А. Б. Васильевым (табл. 6.3).

Материалы исследования показывают, что неинструментальные сигналы особенно важны для сохранения пространственной ориентировки в условиях дискретности восприятия приборной информации. И это понятно, так как информационный поток сигналов, с которыми работает летчик, носит вероятностно–детерминированный характер, что обязывает предвидеть, антиципировать изменения. В процессе антиципации кинестезической составляющей летнего чувства принадлежит далеко не последняя роль.

Таблица 6.2

Результаты опроса о роли собственных ощущений в регуляции действий

Информация, используемая для управления темпом углового вращения самолета

Количество случаев, %

Усилия на ручке управления

35

Скорость перемещения наземных ориентиров

20

Ощущение ускорений

13

Поведение самолета

28

Таблица 6.3 Типы регуляции двигательных актов при пилотировании

Тип регуляции двигательных актов

Двигательные акты каждого типа регуляции. %

Непрерывный визуальный контроль

57

Частичный визуальный контроль

20

в начале движения

9

в начале и в конце движения

2

в конце движения

9

Отсутствие визуального контроля

23

Исходя из краткого анализа общетеоретических положений и некоторых данных прикладных исследований, можно заключить, что, хотя среди специалистов имеется неоднозначное отношение к роли неинструментальных сигналов в формировании программ двигательного акта (т.е. образа или представления результата действия, на который это действие "наслаивается"), включение в учебный процесс способов обучения осмысливанию двигательных задач оправданно. В данном случае речь идет о роли неинструментальных сигналов на стадии первоначального обучения в визуальном полете.

Почему мы так категорично настаиваем на включении неинструментальных сигналов в систему признаков, характеризующих поведение управляемого объекта? Дело в том, что как только курсант впервые в жизни поднимается в небо на аппарате тяжелее воздуха, так тотчас на него будут воздействовать три линейных и три угловых ускорения. Например, при увеличении скорости (уже на взлете) будет иметь место линейное ускорение по оси Х–пу, на первом же развороте в процессе искривления траектории в вертикальной плоскости линейное ускорение по оси Y–ny и угловое ускорение вокруг оси Z–Wy.

В полете, как известно, наиболее часто встречаются следующие режимы:

искривление траектории в вертикальной плоскости при переводе самолета в режим набора или снижения, при этом возникает дополнительная перегрузка DNy и угловое ускорение Wz;

искривление траектории в горизонтальной плоскости сопровождается ощущением угловых ускорений Wx Wy и DNy.

Объективно воздействующие неинструментальные сигналы гравитационных сил постоянно при помощи вестибулярного анализатора трансформируются в акцелерационные ощущения.

В авиационной психофизиологии были проведены специальные исследования акцелерационных ощущений. В частности, установлены пороги чувствительности человека к угловым ускорениям; при длительности воздействия 0,5—1 с он равняется 2,4 гр/с2 при длительности воздействия 1,1—2 с — 1,6 гр/с2, а при длительности воздействия 2,1—3 с — 1,2 гр/с2.

Порог чувствительности человека к перегрузкам при длительности их нарастания 1,5 с колеблется в пределах 0,024—0,03 1/с, а при длительности 4,5 с — 0,01—0,021 1/с. Характерно, что основным фактором, вызывающим акцелерационные ощущения перегрузки, является градиент и длительность действия. При градиенте нарастания 0,12— 0,03 1/с величина скрытого периода ощущения равняется 3,5 с, при 0,121—0,15 1/с и 0,181—0,21 1/с соответственно 1,2 и 1,0 с.

В процессе пилотирования было установлено, что летчик реагирует не только на показания приборов, но и на акцелерационные ощущения, которые вдобавок ко всему еще и регулируют быстроту ответной реакции. Количественные выражения этих факторов представлены в табл. 6.4 и 6.5.

Как видно из табл. 6.4, с увеличением углового ускорения среднее время реакции уменьшается и вместе с тем становится более стабильным. И здесь наблюдается та же тенденция.

Как было отмечено в предыдущих главах, летчики независимо от того, какие дискуссии по этому вопросу ведутся в науке, использовали неинструментальную информацию для построения управляющих движений.

Специальные исследования показали также большие возможности человека по использованию неинструментальных сигналов. Приведем некоторые факты.

В летных экспериментах исследовались характеристики анализаторов при восприятии акцелерационных сигналов. В результате было установлено, что при пилотировании самолета на посадочной прямой величина Nx изменяется в среднем в диапазоне 0,25—0,35 м/с2, Ny —0,2—0,3 1/с. Эксперименты показали, что около 25% управляющих движений были реакциями на эти, как иногда отмечают, "несущественные" сигналы. В дальнейшем были изучены дифференциальные пороги восприятия величины перегрузки. Оказалось, что они составляют 12% и достигают максимальной величины 25% от уровня действующей перегрузки (при Р = 0,95). В летном эксперименте было установлено, что точность считывания по приборам величины крена составляют 2—3 градуса, величины тангажа — 2—3 градуса, величины перегрузки — 0,25 l/c, а оценка этих же параметров по непосредственным ощущениям составляла соответственно: 0,7—1,0 градуса, 0,7—1,2 градуса, 0,5—1 l/c.

Таблица 6.4

Зависимость среднего времени скрытого периоде возникновения •кцeлep•циoннoгo ощущения от величины углового ускорения при вводе самолета в крен [77].

Величина углового ускорения гр/с2

Среднее время реакции, с

Среднеквадратическое отклонение

Величина углового ускорения гр/с2

Среднее время реакции, с

Среднеквадратическое отклонение

1–1,5

40

1,4

4,1—7,0

1,55

0,84

1,5—4.0

2,66

0,91

7,1—10,0

1,36

0,78

Таблица 6.5

Зависимость времени реакции от величины углового ускорения и производной вертикальной перегрузки

Характеристика воздействия

Латентное время двигательной реакции, с

Угловое ускорение самолета, равное 5—10 гр/с2 величина производной вертикальной перегрузки 0,25—0,7 l/c

0,4

Угловое ускорение самолета, равное 15—20 гр/с2 величина производной вертикальной перегрузки, равная 1.3—1,7 l/c

0,3

Угловое ускорение самолета, равное 25—30 гр/с2, величина производной вертикальной перегрузки, равная 2.6—3,3 l/c

0.2

Примечание. Эффективное время восстановления режима горизонтального полета распределилось следующим образом: при вращении самолета с угловой скоростью 6 гр/с2 эффективное время равняется 3 с, при вращении с угловой скоростью 15 гр/с2 и 30 гр/с2 — соответственно 5 и 7 с.

Продолжая наращивать знания по этому вопросу, исследователи получили новые данные, характеризующие влияние опыта летчика на точность создания и соответственно выдерживания заданной величины регулируемого параметра полета по акцелерационным ощущениям. Речь идет о том, что человек на основе акцелерационных ощущений, если они осознаются, может, управляя самолетом, произвольно регулировать (и с большой точностью) величину перегрузки.

В качестве иллюстрации приведем данные о точности создания величины перегрузки на основе только ощущений в зависимости от опыта летной работы при условии, что градиент нарастания перегрузки не превышал 1 ед/с. Начинающий летчик способен задать требуемую перегрузку с ошибкой 0,8±1,0 ед., летчик средней квалификации — с ошибкой 0,5±0,8 ед., летчик высокой квалификации — с ошибкой 0,3±0,5 ед., летчик высшей квалификации — с ошибкой ±0,3 ед. Можно предположить, что преимущественный характер влияния совокупности неинструментальных сигналов на действия зависит от подготовленности летчика, от его умения использовать их для управления или подавлять, когда они мешают ориентировке.

В визуальном полете подавление отрицательного влияния таких воздействий происходит без участия сознания благодаря доминирующей роли устойчивого зрительного перцептивного образа. Эта устойчивость обусловлена тем, что естественные визуальные сигналы, поступающие к летчику, перерабатываются как бы автоматически, они не требуют мысленной переработки: формирование образа происходит на основе сложившейся в процессе летной подготовки концептуальной модели пространства.

В полете по приборам летчик должен ориентироваться не на перцептивный образ, а на образ–представление, который менее устойчив; его формирование и сохранение происходят обязательно при участии сознания, направленного на переработку абстрактных инструментальных сигналов. Именно в полете по приборам инструментальные визуальные и неинструментальные проприоцептивные и кинестетические сигналы оказывают противоречивое воздействие на формирующийся образ пространственного положения, при этом неинструментальные — отрицательное, ведущее к формированию иллюзорных представлений в случае ослабления влияния инструментальных сигналов. Как указывалось, ослабление влияния инструментальной информации вполне вероятно в случае хотя бы кратковременного прекращения произвольного осознанного восприятия и преобразования сигналов в наглядный образ представления. Очень важный для надежности действий компонент образа полета — чувство самолета — в этом случае содержит в себе опасность возникновения иллюзий пространственного положения.

Если в визуальном полете у летчика адекватное содержание образа пространственного положения может формироваться без активного участия сознания, то в полете по приборам необходима непрерывная работа сознания. И чем опытней летчик, тем меньше он позволяет себе отвлекаться от мысли о том, в каком положении относительно земли находится (и будет находиться в ближайшее время) его самолет.

К такой работе сознания побуждает летчика информационная среда полета по приборам, несущая в себе возможность искажения содержания образа в связи с искажением его сенсорно–перцептивных компонентов.

Итак, говоря об информационной среде полета и о ее влиянии на содержание и функционирование образа, следует различать визуальный и приборный полеты. В обоих случаях к летчику поступают визуальные естественные сигналы, которые при неблагоприятных условиях могут помешать формированию адекватного по содержанию образа полета. В визуальном полете перцептивный зрительный образ доминирует и подчиняет себе все другие неинструментальные сигналы, хотя сами зрительные ощущения условий полета необычны в сравнении с земными, благодаря формированию особого функционального органа отражения пространства; образ полета, как отмечалось, является геоцентрическим. В визуальном полете зрительное восприятие подчиняет себе все другие модальности, участвующие в отражении пространства, и корректирует их примерно так же, как при обычном перемещении по земной поверхности.

Чувство самолета в визуальном полете помогает воспринимать перемещение самолета в пространстве. Перцептивный образ полностью соответствует концептуальной модели пространства.

В приборном полете сложность переработки инструментальной информации создает предпосылки для искажения содержания образа в том случае, если произошли перерывы в восприятии и в осмысливании инструментальных визуальных сигналов, а неинструментальные сигналы выдали извращенную информацию. Поскольку уровень сложности переработки инструментальных сигналов зависит от качества индикации пространственного положения, постольку оформление лицевой части индикатора имеет первостепенное значение для повышения надежности ориентировки. Чем проще и быстрее осуществляется преобразование визуальной инструментальной информации в представление, тем больше вероятность преодоления искажений в содержании образа пространства.

Мы считаем, что такое преобразование облегчается, если передаваемая информация соответствует концептуальной модели, сложившейся у летчика, — его представлению о неподвижной земле и перемещающемся относительно земли самолете. До сих пор о содержании образа пространства у летчика мы 'судили в основном по данным их самоотчета. В разделе 6.2 будут описаны экспериментальные данные, подтверждающие положение о геоцентрическом характере представлений летчика о пространстве.

Проблема структуры и функций образа полета имеет прямое отношение к задаче инженерно–психологического проектирования летной деятельности. Эта задача включает два основных аспекта. Один из них относится к разработке технических звеньев системы "летчик— самолет" (орудий труда) с учетом психологических особенностей деятельности летчика; другой — к подготовке: обучению и тренировке летчика (субъекта труда).

Первый из этих аспектов будет рассмотрен в разделах 6.2 и 6.3 данной главы, при этом преимущественно в связи с вопросом об учете образа полета при создании приборов, передающих информацию человеку.

В разделе 6.4 обсуждается вопрос об учете психологической концепции образа полета при организации обучения летчика.

Просмотров: 1746
Категория: Библиотека » Психология


Другие новости по теме:

  • 6.3. УЧЕТ СПЕЦИФИКИ ОБРАЗА ПОЛЕТА ПРИ ПРОЕКТИРОВАНИИ ИНДИКАЦИИ ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ САМОЛЕТА - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • 6.2. ЭКСПЕРИМЕНТАЛЬНАЯ ОЦЕНКА ВЛИЯНИЯ СООТНОШЕНИЯ ИНФОРМАЦИОННОЙ СРЕДЫ И КОНЦЕПТУАЛЬНОЙ МОДЕЛИ НА СОДЕРЖАНИЕ ОПЕРАТИВНОГО ОБРАЗА И НАДЕЖНОСТЬ ДЕЙСТВИЙ ЧЕЛОВЕКА (ПРОБЛЕМА ВИЗУАЛИЗАЦИИ ПОЛЕТА) - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • Глава 6. УЧЕТ ХАРАКТЕРИСТИК ОБРАЗА ПОЛЕТА В ИНЖЕНЕРНО–ПСИХОЛОГИЧЕСКОМ ПРОЕКТИРОВАНИИ ДЕЯТЕЛЬНОСТИ ЛЕТЧИКА - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • 3.1. ИЗМЕНЕНИЕ ОБРАЗА ПОЛЕТА ПРИ ДИРЕКТОРНОМ УПРАВЛЕНИИ - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • 2.1. СТРУКТУРА, СОДЕРЖАНИЕ И ФУНКЦИИ ОБРАЗА ПОЛЕТА - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • Глава 2. ОБРАЗ ПОЛЕТА (психический образ) в ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ (летчика) - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • 2.2. ПРЕДСТАВЛЕННОСТЬ ПСИХИЧЕСКОГО ОБРАЗА СОЗНАНИЮ ЛЕТЧИКА - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • 6.4. ИСПОЛЬЗОВАНИЕ ПСИХОЛОГИЧЕСКОЙ ТЕОРИИ РЕГУЛИРУЮЩЕЙ РОЛИ ОБРАЗА ПРИ ОБУЧЕНИИ ЛЕТЧИКОВ - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • 1.4. ИСХОДНЫЕ ПОСЫЛКИ, ПРИНЦИПЫ И МЕТОДЫ ИССЛЕДОВАНИЯ ОБРАЗА В ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ (ЛЕТЧИКА) - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • 3.2. ПСИХИЧЕСКИЙ ОБРАЗ. РЕГУЛИРУЮЩИЙ ДЕЙСТВИЯ ЛЕТЧИКА В АВТОМАТИЧЕСКОМ РЕЖИМЕ УПРАВЛЕНИЯ - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • Глава 4. СОДЕРЖАНИЕ И СВОЙСТВА ПСИХИЧЕСКОГО ОБРАЗА, РЕГУЛИРУЮЩЕГО ДЕЙСТВИЯ В ТАК НАЗЫВАЕМЫХ НЕСТАНДАРТНЫХ СИТУАЦИЯХ - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • Глава 5. ИЗМЕНЕНИЕ СТРУКТУРЫ ОБРАЗА В СВЯЗИ С ИЗМЕНЕНИЕМ ПСИХИЧЕСКОГО СОСТОЯНИЯ СУБЪЕКТА ДЕЯТЕЛЬНОСТИ - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • Глава 3. ОСОБЕННОСТИ ПСИХИЧЕСКОГО ОБРАЗА, ОБУСЛОВЛЕННЫЕ АВТОМАТИЗАЦИЕЙ ПРОЦЕССА УПРАВЛЕНИЯ - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • Глава 1. ПРОБЛЕМА ОБРАЗА КАК ФУНДАМЕНТАЛЬНАЯ ПРОБЛЕМА ПСИХОЛОГИИ И ЕЕ ЗНАЧЕНИЕ В ИССЛЕДОВАНИИ ТРУДОВОЙ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • 1.3. ПРОБЛЕМА ОБРАЗА В ИНЖЕНЕРНОЙ ПСИХОЛОГИИ - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • Глава X. АНАЛИЗ ПОЗ СНА - СИГНАЛОВ РАННЕГО ПРЕДУПРЕЖДЕНИЯ. - Ночной разговор тела - С. Данкелл
  • 5. Воздействие постгипнотических внушений и сигналов - Самогипноз. Руководство по изменению себя- Брайан М. Алман, Питер Т. Ламбру
  • Распознавание и утилизация минимальных сигналов - Терапевтические метафоры для детей и внутреннего ребенка - Миллс Дж., Кроули Р.
  • 1.1. ОБРАЗ КАК ФЕНОМЕН ПСИХИЧЕСКОГО ОТРАЖЕНИЯ - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • В ПОИСКАХ ОБРАЗА - Помоги себе сам - Алиев X. М.
  • ПРЕОДОЛЕНИЕ "ОБУЧЕННОЙ БЕСПОМОЩНОСТИ" (как и почему еврейская реальность не соответствует нормам психологической науки) - Образ Я - Вадим Ротенберг
  • Сеанс I. Часть 2. СОЗДАНИЕ ОБРАЗА ФЕВРАЛЬСКОГО ЧЕЛОВЕКА - Человек из Февраля- Эриксон М., Росси Э
  • 2. "ЕСЛИ БЫ НАСИЛИЕ БЫЛО РАЗРЕШЕНО..." - Лечение от любви и другие психотерапевтические новеллы - Ирвин Ялом
  • 1.2. УРОВНИ ПСИХИЧЕСКОГО ОТРАЖЕНИЯ - Образ в системе психической регуляции деятельности - Ломов Б.Ф.
  • Глава 13. Как устанавливается психологический контроль и формируется "личное" и "групповое" мнение - Технологии изменения сознания в деструктивных культах - Т.Лири, М.Стюарт и др.
  • Глава XXIV. Духовно-психосоматическая патология и дефект восприятия Образа. - Вопросы этиологии, патофизиологии, патоморфологии и культурологии духовно-психосоматических болезней - И.В. Семенов
  • В СВОБОДНОМ ПОЛЕТЕ. ТРИ МАЛЕНЬКИХ ПРЕДИСЛОВИЯ - НЛП. Техники россыпью - С. А. Горин
  • Роль условий устойчивости при синтезе информации как физическом процессе - Введение меры информации в аксиоматическую базу механики - А.М. Хазен - Философия как наука
  • СКОЛЬКО ПРОСТРАНСТВА НУЖНО ЧЕЛОВЕКУ" - Язык тела. Как понять иностранца без слов - Фаст Дж
  • Границы "Я" или "зонд" сознания. - Топология субъекта (опыт феноменологического исследования) - Тхостов A.Ш.



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       





    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь