АНАЛИЗ РЕГРЕССИОННЫЙ

– статистич. метод исследования зависимости (регрес­сии) между зависимым признаком У и незави­симым (регрессорами, предикторами) Х1, ... ,Хр. решает задачи определения общего вида уравнения регрессии, нахождения оценок пара­метров этого уровня, оценки качества регрессии, проверки статистич. гипотез, к-рые служат двум основным целям. А.р. – предсказания и объяс­нения. В ситуации прогноза акцент смещается на получение оценок  Y по значениям У-ов при минимизации суммы квадратов отклонений

реально наблюдаемых У и их оценок (N – объ­ем выборки). При объяснительном подходе необ­ходимо решить задачу оценки индивидуального вклада каждого из предикторов Х1, ... ,Хр в объ­яснение дисперсии зависимого признака. В случае многомерной линейной регрессии Y=bo b1X1 ... bp Xp исследованию подлежит модель: Y=bo b1X1-b2X2 ... BрХр l, к-рую мож­но представить в матричной форме: Y=Xb l, где Y – вектор наблюдений зависимого призна­ка размерности (Nxl); X – матрица наблюдений предикторов размерности (NxP), b – вектор па­раметров размерности (pxl); l – вектор ошибок размерности (Nxl). Применение метода наименьших квадратов для оценивания параметров модели возможно при условии следующих предположений: 1) ра­венства условных дисперсий, т. е. D(Y/X)=const, 2) независимости ошибок от предикторов и нормального их распределения с нулевым средним и постоянной дисперсией, 3) попарного нормаль­ного распределения всех признаков модели. Ре­шение нормальных уравнений записывается в виде b=(XX)-1 XY. Параметры bi являются ча­стными коэффициентами корреляции, b2j интер­претируется как доля дисперсии Y, объяснен­ная X при закрепленном влиянии остальных X, т. е. измеряет индивидуальный вклад х. в объяс­нение У. В случае коррелирующих X возникают проблемы неопределенности в оценках bi, к-рые становятся зависимыми от порядка включения X в модель. В таких случаях необходимо приме­нение методов анализа корреляционного (см.) и пошагового регрессионного анализа. Построение доверительных интервалов для оценок параметров и проверка гипотезы об отсутствии связи (bi=0) производятся с помощью критерия Стьюдента, оценка значимости регрес­сии – с помощью критерия Фишера, для к-рого оценивается коэффициент множественной кор­реляции R, характеризующий общую связь всех признаков модели. R2показывает долю диспер­сии, объясненную всеми признаками модели (1):

А.р. позволяет оценивать также и нелиней­ные отношения путем использования модели (1) с включением качественных признаков в урав­нение. При этом метод оценки сохраняется, из­меняется только интерпретация рез-тов. Методы А.р. широко используются в соц.-экономич. исследованиях для оценок отношений спроса, предложения, при изучении бюджетов семей и т. д. Лит.: Дрейнер Н., Смит Г. Прикладной регресси­онный анализ. М., 1973; Статистические методы анализа ин­формации в социологических исследованиях. М., 1979; Ти­пология и классификация в социологических исследовани­ях. М„ 1982. К.Д. Аргунова

Просмотров: 1295
Категория: Словари и энциклопедии » Социология » Российская социологическая энциклопедия/ Под общей редакцией академика РАН Г.В.Осипова, 1998




Другие новости по теме:

  • МЕТОД КОРРЕЛЯЦИОННОГО АНАЛИЗА В СОЦИОЛИНГВИСТИКЕ
  • МЕТОД ПЕРЕВОДНЫХ ОЦЕНОК
  • МЕТОД ЭКСПЕРТНЫХ ОЦЕНОК
  • МЕТОД ЭКСПЕРТНЫХ ОЦЕНОК
  • МЕТОД ЭКСПЕРТНЫХ ОЦЕНОК
  • МЕТОД ЭКСПЕРТНЫХ ОЦЕНОК
  • МЕТОД ЭКСПЕРТНЫХ ОЦЕНОК
  • Метод суммарных оценок
  • Метод суммарных оценок
  • Метод экспертных оценок
  • Метод экспертных оценок
  • Методы анализа экспертных оценок
  • Модели СМК отечественные : модель Матвее вой Л. В.
  • Модели СМК: дискурсивные модели Холла и Фиске
  • Модели СМК: коммуникативная модель НоэльНойман
  • Модели СМК: модели конструирования социальной реальности
  • Модели СМК: модели фрейминга
  • Модели СМК: модель «волшебной пули» Лассуэлла
  • Модели СМК: модель Де Флера
  • Модели СМК: модель Шеннона-Уивера
  • Модели СМК: модель культивирования Гербнера
  • Модели СМК: модель средства Маклюэна
  • ОБОСНОВАНИЕ ОЦЕНОК
  • Односторонность оценки, критики, анализа
  • ПОЛУЧЕНИЕ ОЦЕНОК
  • Построение модели
  • СНИЖЕНИЕ РАЗМЕРНОСТИ (пространства переменных)
  • ШКАЛЫ ОЦЕНОК
  • Шкала оценок
  • метод суммарных оценок (шкала Лайкерта)



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       






    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь