|
БУЛЬБУЛЬ (Boole) Джордж (род. 2 нояб. 1815, Линкольн – ум. 8 дек. 1864, Корк) англ, математик и логик, создатель т. н. «алгебраической логики» (см. Логистика). Осн. произв.: «The mathematical analysis of logik», 1847; «An analysis of the laws of thought», 1854 (рус. пер. «Исследование законов мышления»). Философский энциклопедический словарь. 2010. БУЛЬ (Boole), Джордж (2 ноября 1815 – 8 дек. 1864) – англ. математик и логик, основоположник математической логики. Родился в Линкольне в семье ремесленника. Б. не имел спец. математич. образования, однако его успехи в этой области были так велики, что в 1849 он стал проф. математики в Куинс-колледже в Корке (Ирландия), где преподавал до конца жизни. Б. почти в равной мере интересовали логика, математич. анализ, теория вероятностей, этика Спинозы, философ. работы Аристотеля и Цицерона. В работе "Математический анализ логики" ("The mathematical analysis of logic", 1847) содержится попытка математич. обработки дедуктивного фрагмента классич. аристотелевой логики; в статье "Логическое исчисление" ("The calculus of logic", в журн. "Cambridge and Dublin Math. j.", 1848, [v.] 3, p. 183–93) излагается резюме этой работы. В 1854 в Лондоне появляется осн. логич. произведение Б. – "Исследование законов мысли" ("An investigation of the laws of thought..."). Б. исходил из идеи аналогии между алгеброй и логикой. Он стал рассматривать логику как алгебру лишь с нулем и единицей, в к-рой существуют все четыре операции арифметики. Совр. Булю алгебра занималась в основном решением уравнений. Верный своему осн. допущению, Б. заключил отсюда, что и центр. проблематика логики должна определяться вопросами: о решении т.н. логич. уравнений относительно неизвестных терминов. Эта задача решения булевых уравнений равносильна требованию сводить их к наивозможно более простому виду. Ставится также вопрос об исключении к.-л. терминов из заданных логич. уравнений (проблема элиминации). Трактуя алгебру как науку о равенствах, Б. и в исчислении классов также записывает логич. выражения в виде равенств. Он стремился давать полные явные определения, из к-рых можно было бы вывести все свойства определяемого объекта, что соответствует попытке заменить аксиоматич. определения явными. Основными операциями у Б. являются: Сложение, обозначавшееся знаком "+"; в исчислении классов (объемов понятий) булевой формуле х + у соответствует объединение классов х и у с исключением их общей части; в исчислении высказываний – т.н. строгая дизъюнкция, грамматически совпадающая с союзом "либо" (либо х, либо у). Умножение, обозначавшееся знаком "·", в исчислении классов этой операции соответствует пересечение; в исчислении высказываний – конъюнкция, грамматически тождественная союзу "и". Выражение х · у Б. употребляет также в смысле: "те х, которые суть у" (т.е. знак "·" играет здесь роль оператора "тот, который"). Дополнение до единицы (по Б., до класса "всех вещей"), обозначавшееся записью 1 – х; в исчислении классов формула 1 – х означает дополнение к классу х; в исчислении высказываний – отрицание х, т. е. "не – х". С помощью введенных Б. правил преобразования оказалось, в частности, возможным формализовать все те аристотелевы модусы силлогизма, к-рые дают заключения с суждениями общего характера. Основным законом логики Б. считал т.н. принцип идемпотентности, согласно к-рому имеет место соотношение: (1) х · х = х; напр., "белый" и "белый" – это все равно, что просто "белый". В алгебре же выражение х = х верно лишь при х = 1 или х = 0 (т.е. при значениях х, являющихся корнями уравнения х2 – х = 0). Именно в этом пункте следует искать первоисточник мысли Б. о формальной аналогии между элементарной алгеброй и алгеброй логики. Наиболее общая проблема логики, согласно Б., может быть сформулирована так: задано некоторое логическое уравнение, содержащее символы х, у, z, w; требуется найти логич. отношение класса, обозначенного через w, к классам, обозначенным через х, у, z. Исходное уравнение Б. решает сначала по правилам элементарной алгебры, а затем дает логическое истолкование полученного результата с помощью вводимых им с этой целью спец. "правил интерпретации". Идеи Б. наталкивали не только на построение исчисления высказываний как разновидности т.н. 2 – арифметики, т. е. арифметики, в к-рой налицо только два числа 0 и 1 (что было сделано советским математиком И. И. Жегалкиным в 1928), но и на создание логических исчислений, к-рые так обработаны, что в них логич. операции осуществляются так же, как и арифметические (такие исчисления строятся, напр., в приложениях математич. логики к технике, в частности в теории контактно-релейных схем слабого тока). Соч.: The Mathematical analysis of logic, Cambr. – L., 1847; An investigation of the laws of thought..., L., 1854. Лит.: Стяжкин ?. И., Из истории развития математической логики в XIX веке, М., 1959 (Автореферат дисс.); Льар Л., Английские реформаторы логики в ХIХ в., пер. с франц., СПБ, 1897; Venn J., Boole's logical system, "Mind", 1876, v. 1, No 4. H. Стяжкин. Москва. Философская Энциклопедия. В 5-х т. — М.: Советская энциклопедия. Под редакцией Ф. В. Константинова. 1960—1970. БУЛЬ БУЛЬ (Boole) Джордж (2.XI.1815, Линкольн—8 октября 1864, Боллингтемпль, близ г. Корка, Ирландия)—англ. математик и логик, основоположник алгебры логики. Математикой овладел путем самообразования. В 1849—64 профессор математики в Куинс-колледже (Корк). В математическом анализе шел самостоятельным путем, но его осн. достижения относятся к логике. В соч. “Математич. анализ логики” (L, 1847) изложил основы исторически первой алгебро-логич. системы и выразил в ней ассерторическую силлогистику. В своем главном сочинении — “Исследование законов мысли” (L., 1854) детально развил алгебраич. построение логики, применив его к силлогистике и теории вероятностей, а также связав с психолого-эпистемологическими вопросами. Исходя из аналогии между математическими и логическими операциями, Буль ввел “логическое умножение” (пересечение классов, соответственно конъюнкцию высказываний), “логическое сложение” (некое приближение к строгой дизъюнкции, соответственно объединению классов с исключением их общей части). Введение универсального класса (т. н. “универсума рассуждения”) и “логического вычитания” для классов позволило выражать отрицание (соответственно, дополнение класса до универсального), чтодало полную систему операций логики классов (соответственно логики высказывании) и отвечающие ей законы. Представляя высказывания в виде равенств, Буль для формализации дедукции развил методику решения логических уравнений. Не будучи непосредственно булевой алгеброй, система Буля исторически явилась ее истоком (работы Джевонса). Соч.: Collected Logical Works, ?. 1, II. The Open Court: La SaUe (111.), 1952. Лит.: BroadbenI ?.?. A. Georg Boole, in Dictionary of Sei, Biography, v. II, 1970; Unnl. Boole's logical system.—“Mind”, 1876, v. l, N 4; Kneale W.&M. The Development of Logic. Oxf., 1978; ДьярЛ. Английские реформаторы логики в 19 в., пер. с франц. СПб., 1897; Стяжкин Н. И. Формирование математической логики. Л.—М., 1967. Б. В. Бирюков Новая философская энциклопедия: В 4 тт. М.: Мысль. Под редакцией В. С. Стёпина. 2001. Синонимы: Категория: Словари и энциклопедии » Философия » Философская энциклопедия Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|