Принципы математики


Принципы математики
        «ПРИНЦИПЫ МАТЕМАТИКИ» («PRINCIPIA MATHEMATICA») — трехтомный труд о логике и основаниях математики, написанный А.Н. Уайтхедом и Б. Расселом и опубликованный в 1910, 1912 и 1913 (около 2000 с). Целью этой работы было показать, что, используя минимальные и очевидные логические средства (аксиомы и правила вывода), можно дедуцировать все математические истины (см. Логицизм). Совершенно справедливо подчеркивается, что после аристотелевского Organon данная работа остается наиболее влиятельной из когда-либо написанных книг по логике (A.D. Irvine).
        Главным источником и мотивацией для «П. м.» были работы Г. Фреге по логике и математике. Вслед за Фреге авторы «П. м.» предприняли попытку дать чисто логическое определение математических сущностей, подобных числам, и затем дедуцировать их фундаментальные свойства. При этом основная задача заключалась в том, чтобы избежать парадокса, обнаруженного в 1902 Расселом в работе Фреге «Основания арифметики». Для этого была разработана теория типов: множество относится к более высокому типу, чем его элементы, и мы не можем говорить о такой конструкции как «множество всех множеств», которая приводит к парадоксу Рассела (см. Множеств теория). Используя теорию типов, оказалось возможным избежать всех известных теоретико-множественных парадоксов.
        Хотя «П. м.» содержит приемлемые доказательства многих важнейших теорем в теории множеств, в конечной и трансфинитной арифметике, две содержащиеся в труде аксиомы носят не логический характер. Первая из них называется аксиомой бесконечности; она устанавливает, что существует бесконечное число объектов. Это допущение, скорее всего, является эмпирическим по своей природе. Вторая аксиома называется аксиомой сводимости и введена для обхода некоторых трудностей, возникших в теории типов. Многие авторы отмечают, что эта аксиома является просто ad hoc. Поэтому вопрос о том, сводима ли в «П. м.» математика к логике или только к теории множеств, остается открытым.
        Тем не менее влияние книги на последующее развитие логики было колоссальным и в первую очередь привело к металогическим исследованиям рассмотренных в ней формальных систем. В 1920 Э. Пост впервые опубликовал доказательство о дедуктивной полноте логики высказываний, а также о ее функциональной полноте. В 1930 К. Гёдель впервые опубликовал доказательство о дедуктивной полноте логики предикатов (см. Полнота логических исчислений). Последнее говорит о дедуктивной мощи новой логики (отличной от аристотелевской), что позволило положить ее в фундамент всей математики. К тому же еще ранее было показано, что логика предикатов как формальная система непротиворечива (см. Непротиворечивость).
        Уже в первом томе «П. м.» дается логическое определение натуральных чисел 1 и 2 и встает вопрос о непротиворечивости и полноте такой, казалось бы, совсем простой и естественной формальной системы, как арифметика натуральных чисел. В дальнейшем основные усилия были направлены на то, чтобы доказать, что формальные системы, вовлеченные в «П. м.», не содержат противоречий. В эту работу включился Д. Гильберт, и в этом еще одна заслуга труда Уайтхеда и Рассела. В 1931 наступил критический момент, когда Гёдель показал, что доказать непротиворечивость формальной арифметики собственными средствами невозможно, а предположение о ее непротиворечивости ведет к тому, что система арифметики, включающая операции сложения и умножения, не является достаточно богатой, чтобы доказать все перво-порядковые истины о натуральных числах (см. «О формально неразрешимых предложениях»). В научном мире это было воспринято, в основном, как несостоятельность проекта логицизма, осуществленного в «П. м.», и как крах программы Гильберта (см. Формализм).
        В заключение отметим, что теоремы Гёделя о неполноте вызвали оживленную дискуссию, продолжающуюся по сей день и вовлекшую в свою сферу самые различные области человеческого знания: философию, эпистемологию, психологию, методологию систем искусственного интеллекта и т.д. В свою очередь, проект логицизма, который пытались реализовать Уайтхед и Рассел в «П. м.», периодически возрождается, находя все новые пути для логического обоснования математических понятий.
        А.С. Карпенко
        Лит.: Whitehead A.N. and Russell В. Principia Mathematica. 3 vols. Cambridge: Cambridge Univ. Press, 1910,1912,1913; 2nd e d., 1925 (Vol. 1), 1927 (Vols 2, 3); Abridged as Principia Mathematica to *56. Cambridge: Cambridge Univ. Press, 1962 (2nd ed., 1997).

Энциклопедия эпистемологии и философии науки. М.: «Канон+», РООИ «Реабилитация». . 2009.


Просмотров: 2112
Категория: Словари и энциклопедии » Философия » Энциклопедия эпистемологии и философии науки





Другие новости по теме:

  • “РАЗУМНЫЕ МЫСЛИ О БОГЕ, МИРЕ И ДУШЕ ЧЕЛОВЕКА, А ТАКЖЕ О ВСЕХ ВЕЩАХ ВООБЩЕ”
  • “СИСТЕМА ЛОГИКИ СИЛЛОГИСТИЧЕСКОЙ И ИНДУКТИВНОЙ”
  • Вначале было солнце
  • Вначале было яйцо
  • Где это было?
  • ИНТЕРПРЕТАЦИЯ в науке и логике
  • Исследования по логике объяснения
  • Класс, Множество (В Логике И Математике)
  • МНОЖЕСТВ ТЕОРИЯ
  • НЕПРОТИВОРЕЧИВОСТЬ ТЕОРИИ
  • О природе логики
  • Объединение (Сложение) Классов (Множеств)
  • Основные законы арифметики
  • От наукоучения — к логике культуры. Два философских...
  • ПСИХОЛОГИЗМ В ЛОГИКЕ
  • Пересечение Классов (Множеств)
  • СМЫСЛ (В ЛОГИКЕ)
  • Система логики силлогистической и индуктивной
  • Системы и теории (systems and theories)
  • ТЕОРИЯ В ЛОГИКЕ
  • ТЕОРИЯ МНОЖЕСТВ
  • ТЕОРИЯ ТИПОВ
  • ТИПОВ ТЕОРИЯ
  • ФИГУРА Фигура, также карта, схема, тема, зеркало небес, гороскоп - условное изображение состояния неба (т. е. астрологически значимых астрономических факторов) в данный момент времени. Наиболее значимые в большинстве систем факторы, так или иначе отр
  • ФИЛОСОФИЯ МАТЕМАТИКИ
  • множеств пересечение
  • множеств сложение
  • множеств теория
  • типов теория
  • философия математики



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       






    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь