НЕРАЗРЕШИМАЯ ФОРМУЛА


НЕРАЗРЕШИМАЯ ФОРМУЛА
формула к.-л. (логико-математического) исчисления, одновре- менно не доказуемая и не опровержимая средствами этого исчисления. (Соответственно формула, доказуемая или опровержимая в исчислении, наз. разрешимой в нем.) Термин "Н. ф." прилагается, как правило, лишь по отношению к замкнутым формулам, что объясняется трудностями, связанными с возможностью различных интерпретаций, открытых (незамкнутых) формул. Напр., при наиболее распространенной интерпретации, т.н. интерпретации всеобщности, формула А(х) интерпретируется так же, как и ее замыкание ?хА(х), так что формула ?(x), – интерпретируемая в этом случае как ?xA(x), – не выражает отрицания предложения, выражаемого формулой А(х), и в применении к таким формулам понятие Н. ф. оказывается довольно бессодержательным. (Подробнее об интерпретациях формул со свободными переменными см. в ст. Предикатов исчисление.)
Наличие в исчислении Н. ф. означает, по определению, его (простую) неполноту. Наиболее известными примерами Н. ф. служат формулы, выражающие свою собственную недоказуемость, доказательство существования к-рых составляет предмет разл. модификаций знаменитой теоремы Гёделя о неполноте формальной арифметики. Неразрешимость (одновременная недоказуемость и неопровержимость) к.-л. формулы не означает, вообще говоря, невозможности установления истинности (или ложности) выражаемого ею предложения к.-л. cодержат. образом. Так, Н. ф., фигурирующие в доказательствах теоремы Гёделя, как раз являются (в предположении непротиворечивости системы, содержащей Н. ф.) содержательно истинными. Желая подчеркнуть именно формальный характер понятий доказуемости и опровержимости, часто говорят о формально Н. ф. (соответственно о формально разрешимых). С др. стороны, эпитет "неразрешимое" прилагают и непосредственно к предложениям к.-л. теории; именно так этот термин был впервые (1931) введен в основополагающей работе К. Гёделя. О методологич. и филос. (гносеологич.) значениях понятия Н. ф., см. Полнота, Метатеория и лит. при этих статьях.
Ю. Гастев. Москва.

Философская Энциклопедия. В 5-х т. — М.: Советская энциклопедия. . 1960—1970.


Просмотров: 956
Категория: Словари и энциклопедии » Философия » Философская энциклопедия





Другие новости по теме:

  • “ЭНЦИКЛОПЕДИЯ”
  • Алкоголизма диагностическая формула
  • ГЁДЕЛЯ ТЕОРЕМА
  • ЗАМКНУТАЯ ФОРМУЛА
  • КОНТРФАКТИЧЕСКИЕ ПРЕДЛОЖЕНИЯ
  • Метод социолингвистической интерпретации
  • О формально неразрешимых предложениях
  • ПРЕДЛОЖЕНИЯ НАБЛЮДЕНИЯ
  • ПРОТОКОЛЬНЫЕ ПРЕДЛОЖЕНИЯ
  • РАТСА ФОРМУЛА
  • Сексуальная формула
  • ТЕРМИН
  • ТЕРМИН
  • ТЕРМИН
  • Термин
  • Термин
  • ФОРМАЛЬНО-ДИНАМИЧЕСКИЕ СВОЙСТВА
  • ФОРМУЛА
  • ФОРМУЛА ОБОДРЕНИЯ
  • Формула Флеша (Flesch formulas)
  • Формула внушения
  • ЭНЦИКЛОПЕДИЯ
  • ЭНЦИКЛОПЕДИЯ
  • ЭНЦИКЛОПЕДИЯ
  • гёделя теорема
  • дхарм "обусловленных" двенадцатичленная формула взаимодействия
  • естественные интерпретации
  • методика интерпретации
  • термин
  • термин эмпирический



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       






    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь