Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/init.php on line 69 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/init.php on line 69 Warning: strtotime(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/academicru/academicru_news.php on line 46 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/academicru/academicru_news.php on line 47 Warning: strtotime(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/academicru/academicru_news.php on line 49 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/academicru/academicru_news.php on line 50 ДЕДУКЦИЯ



ДЕДУКЦИЯ


ДЕДУКЦИЯ
(от лат. deductio — выведение) — переход от посылок к заключению, опирающийся на логический закон, в силу чего заключение с логической необходимостью следует из принятых посылок. Характерная особенность Д. заключается в том, что от истинных посылок она всегда ведет только к истинному заключению.
Д. как умозаключению, опирающемуся на логический закон и с необходимостью дающему истинное заключение из истинных посылок, противопоставляется индукция — умозаключение, не опирающееся на закон логики и ведущее от истинных посылок к вероятному, или проблематичному, заключению.
Дедуктивными являются, напр., умозаключения:
Если лед нагревается, он тает.
Лед нагревается.
Лед тает.
Черта, отделяющая посылки от заключения, стоит вместо слова «следовательно».
Примерами индукции могут служить рассуждения:
Бразилия — республика; Аргентина — республика.
Бразилия и Аргентина — южноамериканские государства.
Все южноамериканские государства являются республиками.
Италия — республика; Португалия — республика; Финляндия — республика; Франция — республика.
Италия, Португалия, Финляндия, Франция — западноевропейские страны.
Все западноевропейские страны являются республиками.
Индуктивное умозаключение опирается на некоторые фактические или психологические основания. В таком умозаключении заключение может содержать информацию, отсутствующую в посылках. Достоверность посылок не означает поэтому достоверности выведенного из них индуктивного утверждения. Заключение индукции проблематично и нуждается в дальнейшем исследовании. Так, посылки и первого, и второго приведенных индуктивных умозаключений истинны, но заключение первого из них истинно, а второго — ложно. Действительно, все южноамериканские государства — республики; но среди западноевропейских стран имеются не только республики, но и монархии.
Особенно характерными Д. являются логические переходы от общего знания к частному типа:
Все люди смертны.
Все греки — люди.
Все греки смертны.
Во всех случаях, когда требуется рассмотреть какое-то явление на основании уже известного общего правила и вывести в отношении этого явления необходимое заключение, мы умозаключаем в форме Д. Рассуждения, ведущие от знания о части предметов (частного знания) к знанию обо всех предметах определенного класса (общему знанию), — это типичные индукции. Всегда остается вероятность того, что обобщение окажется поспешным и необоснованным («Сократ — умелый спорщик; Платон — умелый спорщик; значит, каждый человек — умелый спорщик»).
Нельзя вместе с тем отождествлять Д. с переходом от общего к частному, а индукцию — с переходом от частного к общему. В рассуждении «Шекспир писал сонеты; следовательно, неверно, что Шекспир не писал сонетов» есть Д., но нет перехода от общего к частному. Рассуждение «Если алюминий пластичен или глина пластична, то алюминий пластичен» является, как принято думать, индуктивным, но в нем нет перехода от частного к общему. Д. — это выведение заключений, столь же достоверных, как и принятые посылки, индукция — выведение вероятных (правдоподобных) заключений. К индуктивным умозаключениям относятся как переходы от частного к общему, так и аналогия, каноны индукции, целевое обоснование и т.д.
Дедуктивные умозаключения позволяют из уже имеющегося знания получать новые истины, и притом с помощью чистого рассуждения, без обращения к опыту, интуиции, здравому смыслу и т.п. Д. дает стопроцентную гарантию успеха. Отправляясь от истинных посылок и рассуждая дедуктивно, мы обязательно во всех случаях получим достоверное знание.
Не следует, однако, отрывать Д. от индукции и недооценивать последнюю. Почти все общие положения, включая и научные законы, являются результатами индуктивного обобщения. В этом смысле индукция — основа нашего знания. Сама по себе она не гарантирует его истинности и обоснованности, но она порождает предположения, связывает их с опытом и тем самым сообщает им определенное правдоподобие, более или менее высокую степень вероятности. Опыт — источник и фундамент человеческого знания. Индукция, отправляющаяся от того, что постигается в опыте, является необходимым средством его обобщения и систематизации.
В обычных рассуждениях Д. только в редких случаях предстает в полной и развернутой форме. Чаще всего указываются не все используемые посылки, а лишь некоторые. Общие утверждения, которые кажутся хорошо известными, опускаются. Не всегда явно формулируются и заключения, вытекающие из принятых посылок. Сама логическая связь, существующая между исходными и выводимыми утверждениями, лишь иногда отмечается словами, подобными «следовательно» и «значит». Нередко Д. является настолько сокращенной, что о ней можно только догадываться. Проводить дедуктивное рассуждение, ничего не опуская и не сокращая, обременительно. Однако всякий раз, когда возникает сомнение в обоснованности сделанного вывода, необходимо возвращаться к началу рассуждения и воспроизводить его в возможно более полной форме. Без этого трудно или даже невозможно обнаружить допущенную ошибку.
Дедуктивная аргументация представляет собой выведение обосновываемого положения из иных, ранее принятых положений. Если выдвинутое положение удается логически (дедуктивно) вывести из уже установленных положений, это означает, что оно приемлемо в той же мере, что и сами эти положения. Обоснование одних утверждений путем ссылки на истинность или приемлемость др. утверждений — не единственная функция, выполняемая Д. в процессах аргументации. Дедуктивное рассуждение служит также для верификации (косвенного подтверждения) утверждений: из проверяемого положения дедуктивно выводятся его эмпирические следствия; подтверждение этих следствий оценивается как индуктивный довод в пользу исходного положения. Дедуктивное рассуждение используется также для фальсификации утверждений путем показа того, что вытекающие из них следствия являются ложными. Не достигшая успеха фальсификация представляет собой ослабленный вариант верификации: неудача в опровержении эмпирических следствий проверяемой гипотезы является аргументом, хотя и весьма слабым, в поддержку этой гипотезы. И наконец, Д. используется для систематизации теории или системы знания, прослеживания логических связей входящих в нее утверждений, построения объяснений и пониманий, опирающихся на общие принципы, предлагаемые теорией. Прояснение логической структуры теории, укрепление ее эмпирической базы и выявление ее общих предпосылок является вкладом в обоснование входящих в нее утверждений.
Дедуктивная аргументация является универсальной, применимой во всех областях рассуждения и в любой аудитории. «И если блаженство есть не что иное, как жизнь вечная, а жизнь вечная — это познание истины, то блаженство — это не что иное, как познание истины» — Иоанн Скот (Эриугена). Это теологическое рассуждение представляет собой дедуктивное рассуждение, а именно силлогизм.
Удельный вес дедуктивной аргументации в разных областях знания существенно различен. Очень широко она применяется в математике и математической физике и только эпизодически — в истории или эстетике. Имея в виду сферу приложения Д., Аристотель писал: «Не следует требовать от оратора научных доказательств, точно так же как от математика не следует требовать эмоционального убеждения». Дедуктивная аргументация является очень сильным средством, но, как и всякое такое средство, она должна использоваться узконаправленно. Попытка строить аргументацию в форме Д. в тех областях или в той аудитории, которые для этого не годятся, приводит к поверхностным рассуждениям, способным создать только иллюзию убедительности.
В зависимости от того, насколько широко используется дедуктивная аргументация, все науки принято делить на деду кти вн ы е и индуктивные. В первых используется по преимуществу или даже единственно дедуктивная аргументация. Во вторых такая аргументация играет лишь заведомо вспомогательную роль, а на первом месте стоит эмпирическая аргументация, имеющая индуктивный, вероятностный характер. Типично дедуктивной наукой считается математика, образцом индуктивных наук являются естественные науки. Однако деление наук на дедуктивные и индуктивные, широко распространенное еще в нач. 20 в., сейчас во многом утратило свое значение. Оно ориентировано на науку, рассматриваемую в статике, как систему надежно и окончательно установленных истин.
Понятие «Д.» является общеметодологическим понятием. В логике ему соответствует понятие доказательства.

Философия: Энциклопедический словарь. — М.: Гардарики. . 2004.


ДЕДУКЦИЯ
        (от лат. deductio — выведение), переход от общего к частному; в более спец. смысле термин «Д.» обозначает процесс логич. вывода, т. е. перехода по тем или иным правилам логики от некоторых данных предложений-посылок к их следствиям (заключениям). Термин «Д.» употребляется и для обозначения конкретных выводов следствий из посылок (т.е. как синоним термина «вывод» в одном из его значений), и как родовое наименование общей теории построений правильных выводов (умозаключении). Науки, предложения которых преим., получаются как следствия некрых общих принципов, постулатов, аксиом, принято наз. дедуктивными (математика, теоретич. механика, некрые разделы физики и др.), а аксиоматический метод, посредством которого производятся выводы этих частных предложений, часто наз. аксиоматико-дедуктивным.
        Изучение Д. составляет гл. задачу логики; иногда формальную логику даже определяют как теорию Д., хотя логика далеко не единств, наука, изучающая методы Д.: психология изучает реализацию Д. в процессе реального индивидуального мышления, а теория познания — как один из осн. (наряду с другими, в частности различными формами индукции) методов науч. познания.
        Хотя термин «Д.» впервые употреблён, но-видимому, Боэцием, понятие Д.— как доказательство к.-л. предложения посредством силлогизма — фигурирует уже у Аристотеля («Первая Аналитика»). В философии и логике ср. веков и нового времени существовали различные взгляды на роль Д. в ряду др. методов познания. Так, Декарт противопоставлял Д. интуиции, посредством крой, но его мнению, человеч. разум «непосредственно усматривает» истину, в то время как Д. доставляет разуму лишь «опосредованное» (полученное путём рассуждения) знание. Ф. Бэкон, а позднее и др. англ. логики-«индуктивисты» (У. Уэвелл, Дж. С. Милль, А. Бэн и др.) считали Д. «второстепенным» методом, в то время как подлинное знание, по их мнению, даёт только индукция. Лейбниц и Вольф, исходя из того, что Д. не даёт «новых фактов», именно на этом основании приходили к прямо противоположному выводу: полученные путём Д. знания являются «истинными во всех возможных мирах».
        Диалектич. взаимосвязь Д. и индукции была раскрыта Ф. Энгельсом, который писал, что «индукция и дедукция связаны между собой столь же необходимым образом, как синтез и анализ. Вместо того чтобы односторонне превозносить одну из них до небес за счет другой, надо стараться применять каждую из них на своем месте, а этого можно добиться лишь в том случае, если не упускать иа «иду их связь между собой, их взаимное дополнение друг друга» (Маркс К. и Энгельс Ф., Соч., т. 20, с. 542—43).
        В формальной логике к системе логич. правил и к их применениям в любой области относится след, положение: всё, что заключено в любой полученной посредством дедуктивного умозаключения логич. истине, содержится уже в посылках, из которых она выведена. Каждое применение правила состоит в том, что общее положение относится (применяется) к некоторой конкретной (частной) ситуации. Некоторые правила логич. вывода подпадают под такую характеристику и совсем явным образом. Так, напр., различные модификации т. н. правила подстановки гласят, что свойство доказуемости (или выводимости из данной системы посылок) сохраняется при любой замене элементов произвольной формулы данной формальной теории конкретными выражениями того же вида. То же относится к распространённому способу задания аксиоматич. систем посредством т. н. схем аксиом, т, е. выражений, обращающихся в конкретные аксиомы после подстановки вместо входящих в них общих обозначений конкретных формул данной теории.
        Под Д. часто понимают и сам процесс логич. следования. Это обусловливает тесную связь понятия Д. с понятиями вывода и следствия, находящую своё отражение и в логич. терминологии. Так, «теоремой о Д.» принято называть одно из важных соотношений между логич. связкой импликации (формализующей словесный оборот «если..., то...») и отношением логич. следования (выводимости): если из посылки А выводится следствие В, то импликация А В («если А..., то В...) доказуема (т. е. выводима уж« без всяких посылок, из одних только аксиом). Аналогичный характер носят и др. связанные с понятием Д. логич. термины. Так, дедуктивно эквивалентными наз. предложения, выводимые друг из друга; дедуктивная полпота системы (относительнок.-л. свойства) состоит в том, что все выражения данной системы, обладающие этим свойством (напр., истинностью при некоторой интерпретации), доказуемы в ней.
        Свойства Д. раскрывались преим. в ходе построения конкретных логич. формальных систем (исчислений) и общей теории таких систем (т. н. теории доказательства).
        см. Логика.
        Энгельс Ф., Диалектика природы, Маркс К. и Э н-г е л ь сф., Соч., т. 20; Ленин В. И., Филос. тетради, ПСС, т. 29; Т a p с к и й А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948; Асмус В. Ф., Учение логики о доказательстве и опровержении, М., 1954.

Философский энциклопедический словарь. — М.: Советская энциклопедия. . 1983.


ДЕДУКЦИЯ
(от лат. deductio – выведение)
выведение частного из общего; путь мышления, который ведет от общего к частному, от общего положения к особенному. Общей формой дедукции является при этом силлогизм (см. Умозаключение), посылки которого образует указанное общее положение, а выводы – соответствующее частное суждение. Дедукция, или дедуктивный метод, применяется только в естественных науках, особенно в математике. Так, напр., из аксиомы Гильберта («две отличные друг от друга точки А к В всегда определяют прямую а») дедуктивным путем можно сделать вывод, что кратчайшей линией между двумя точками является соединяющая эти две точки прямая. Противоположностью дедукции является индукция (см. также Доказательство). Трансцендентальной дедукцией Кант называет объяснение того, каким образом априорные понятия могут относиться к предметам, т.е. каким образом допонятийное восприятие может оформиться в понятийный опыт (познание). Трансцендентальная дедукция отличается от эмпирической, которая указывает лишь на способ образования понятия благодаря опыту и рефлексии.

Философский энциклопедический словарь. 2010.


ДЕДУКЦИЯ
(от лат. deductio – выведение) – выведение следствий из посылок в соответствии с законами логики. Д. является предметом исследования логики, диалектич. материализма и психологии. Логика изучает Д., анализируя формальные правила, к-рым подчиняется логич. следование. Диалектич. материализм исследует Д. как один из приемов (методов) науч. познания в связи с историч. развитием человеч. мышления и общественно-историч. практики, выявляя место Д. в системе приемов науч. исследования. Психология изучает Д. как процесс реального индивидуального мышления и его формирования в процессе развития индивидуума.
При выявлении правил Д. формальная логика пользуется методом формализации. Правила Д. формулируются обычно в таком виде: "если посылки имеют такую-то структуру и если они при этом являются истинными, доказанными, то и заключение, имеющее такую-то структуру, также будет истинным, доказанным". В логике эти правила обычно облекаются в символич. форму.
Термин "Д." встречается уже у Аристотеля, понимавшего Д. как доказательство к.-л. положения посредством силлогизма. Термин "???????" (равнозначный Д.) у Аристотеля ("Первая Аналитика", II 25, 69а 20–36) означает решение к.-л. проблемы путем сведeния ее к более очевидным положениям. Термин "deductio" встречается впервые в соч. Боэция ("Введение в категорический силлогизм" – "Ad cathegoricos syllogismos introductio", 1492) в аристотелевском смысле. Ф. Бэкон недооценивал роль Д. в процессе науч. познания. Декарт противопоставлял Д. не индукции, а интуиции. С помощью интуиции, согласно Декарту, человеч. разум непосредственно усматривает истину, тогда как с помощью Д. он постигает истину опосредованно, т.е. путем рассуждения. Лейбниц впервые выдвинул идею построения логики как исчисления ("универсальная характеристика") и поставил задачу изучения логич. свойств отношений в целях расширения средств дедуктивного вывода.
Англ. логики-индуктивисты (Дж. С. Милль, Бэн и др.), односторонне преувеличивая ценность индукции, преуменьшали роль Д. в науч. исследовании. Так, напр., Милль полагал, что Д. якобы равносильна чисто вербальным оборотам речи и сводится лишь к суммированию случаев, попавших в сферу наблюдения. Милль смешивал два аспекта в понимании общего: общее как зафиксированная сумма отд. частных случаев (что особенно заметно в т.н. полной "индукции") и общее. как выражение нек-рой закономерности.
Вопросы Д. начали интенсивно разрабатываться с конца 19 в. в связи с бурным развитием математич. логики, выяснением оснований математики. Это привело к расширению средств дедуктивного доказательства (напр., была разработана "логика высказываний"), к уточнению мн. понятий Д. (напр., понятия логич. следования), введению новой проблематики в теории дедуктивного доказательства (напр., вопросы о непротиворечивости, о полноте дедуктивных систем, проблема разрешимости) и т.п.
Разработка вопросов Д. в 20 в. связана с именами Буля, Фреге, Пеано, Порецкого, Шрeдера, Пирса, Рассела, Гёделя, Гильберта, Тарского и др. Так, напр., Буль считал, что Д. состоит лишь в исключении (элиминации) средних терминов из посылок. Обобщая идеи Буля и пользуясь собственными алгебрологич. методами, рус. логик Порецкий показал, что такое понимание Д. является слишком узким (см. "О способах решения логических равенств и об обратном способе математической логики", Казань, 1884). Согласно Порецкому, Д. состоит не в исключении средних терминов, а в исключении свeдений. Процесс исключения свeдений состоит в том, что при переходе от логич. выражения L = 0 к одному из его следствий достаточно отбросить в левой его части, представляющей собой логич. многочлен в совершенной нормальной форме, нек-рые из его конституент.
В. совр. бурж. философии весьма распространенным является чрезмерное преувеличение роли Д. в познании. В ряде работ по логике принято подчеркивать ту якобы совершенно исключит. роль, к-рую Д. играет в математике, в отличие от др. науч. дисциплин. Акцентируя внимание на этом "отличии", доходят до утверждения, будто бы все науки можно разделить на т.н. дедуктивные и эмпирические. (см., напр., L. S. Stebbing, A modern introduction to logic, L., 1930). Однако такое разграничение является принципиально неправомерным и оно отрицается не только учеными стоящими на диалектико-материалистич. позициях, но и нек-рыми бурж. исследователями (напр., Я. Лукасевичем; см. Я. Лукасевич, Аристотелевская силлогистика с точки зрения современной формальной логики, пер. с англ., М., 1959), осознавшими, что как логич., так и математич. аксиомы являются в конечном счете отражением нек-рых экспериментов с материальными предметами объективного мира, действий над ними в процессе обществ.-историч. практики. И в этом смысле математич. аксиомы не противостоят положениям наук о природе и обществе. Важной чертой Д. является ее аналитич. характер. Еще Милль заметил, что в заключении дедуктивного рассуждения нет ничего такого, что не содержалось бы уже в его посылках. Чтобы описать аналитич. характер дедуктивного следования формально, прибегнем к точному языку алгебры логики. Допустим, что данное дедуктивное рассуждение формализовано средствами алгебры логики, т.е. точно зафиксированы отношения между объемами понятий (классами) как в посылках, так и в заключении. Тогда окажется, что разложение посылок на конституенты (элементарные классы) единицы содержит все те конституенты, к-рые имеются в разложении следствия.
Ввиду особого значения, к-рое приобретает во всяком дедуктивном выводе раскрытие компонент посылок, Д. часто связывают с анализом. Поскольку же в процессе Д. (в выводе дедуктивного умозаключения) часто происходит объединение знаний, данных нам в отд. посылках, Д. связывают с синтезом.
Единственно правильное методологич. решение вопроса о соотношении Д. и индукции дали классики марксизма-ленинизма. Д. неразрывно связано со всеми др. формами умозаключений и прежде всего с индукцией. Индукция тесно связана с Д., т.к. любой единичный факт может быть понят только через включение его образа в уже сложившуюся систему понятий, а Д., в конечном счете, зависит от наблюдения, эксперимента и индукции. Д. без помощи индукции никогда не может обеспечить познание объективной действительности. "Индукция и дедукция связаны между собою столь же необходимым образом, как синтез и анализ. Вместо того чтобы односторонне превозносить одну из них до небес за счет другой, надо стараться применять каждую на своем месте, а этого можно добиться лишь в том случае, если не упускать из виду их связь между собою, их взаимное дополнение друг друга" (Энгельс Ф., Диалектика природы, 1955, с. 180–81). Содержание посылок дедуктивного умозаключения не дано заранее в готовом виде. Общее положение, к-рое непременно должно быть в одной из посылок Д., всегда является результатом всестороннего исследования множества фактов, глубокого обобщения закономерных связей и отношений между вещами. Но и одна индукция невозможна без Д. Характеризуя "Капитал" Маркса как классич. пример диалектич. подхода к действительности, Ленин отметил, что в "Капитале" индукция и Д. совпадают (см. "Философские тетради", 1947, с. 216 и 121), подчеркивая тем самым их неразрывную связь в процессе науч. исследования.
Д. иногда применяют с целью проверки к.-л. суждения, когда из него выводятся следствия по правилам логики с тем, чтобы затем эти следствия проверить на практике; в этом состоит один из методов проверки гипотез. Д. пользуются также при раскрытии содержания тех или иных понятий.
Лит.: Энгельс Ф., Диалектика природы, М., 1955; Ленин В. И., Соч., 4 изд., т. 38; Аристотель, Аналитики первая и вторая, пер. с греч., М., 1952; Декарт Р., Правила для руководства ума, пер. с лат., М.–Л., 1936; его же, Рассуждение о методе, М., 1953; Лейбниц Г. В., Новые опыты о человеческом разуме, М.–Л., 1936; Каринский М. И., Классификация выводов, в сб.: Избр. труды русских логиков XIX в., М., 1956; Льар Л., Английские реформаторы логики в XIX в., СПБ, 1897; Кутюра Л., Алгебра логики, Одесса, 1909; Поварнин С., Логика, ч. 1 – Общее учение о доказательстве, П., 1915; Гильберт Д. и Аккерман В., Основы теоретической логики, пер. с нем., М., 1947; Тарский ?., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948; Асмус В. ?., Учение логики о доказательстве и опровержении, М., 1954; Boole G., An investigation of the laws of thought..., N. Y., 1951; Schroder ?., Vorlesungen uber die Algebra der Logik, Bd 1–2, Lpz., 1890–1905; Reichenbach H. Elements of symbolic logic, ?. ?., 1948.
Д. Горский. Москва.

Философская Энциклопедия. В 5-х т. — М.: Советская энциклопедия. . 1960—1970.


ДЕДУКЦИЯ
    ДЕДУКЦИЯ (от лат. deductio — выведение) — переход от общего к частному; в более специальном смысле термин “дедукция” обозначает процесс логического вывода, т. е. перехода по тем или иным правилам логики от некоторых данных предложений-посылок к их следствиям (заключениям). Термин “дедукция” употребляется и для обозначения конкретных выводов следствий из посылок (т. е. как синоним термина “вывод” в одном из его значений), и как родовое наименование общей теории построений правильных выводов. Науки, предложения которых преимущественно получаются как следствия некоторых общих принципов, постулатов, аксиом, принято называть дедуктивными (математика, теоретическая механика, некоторые разделы физики и др.), а аксиоматический метод, посредством которого производятся выводы этих частных предложений,—аксиоматико-дедуктивным.
    Изучение дедукции составляет задачу логики; иногда формальную логику даже определяют как теорию дедекции. Хотя термин “дедукция” впервые употреблен, по-видимому, Боэцием, понятие дедукции — как доказательство какого-либо предложения посредством силлогизма—фигурирует уже у Аристотеля (“Первая Аналитика”). В философии и логике Нового времени существовали различные взгляды на роль дедукции в ряду методов познания. Так, Декарт противопоставлял дедукции интуицию, посредством которой, по его мнению, разум “непосредственно усматривает” истину, в то время как дедукция доставляет разуму лишь “опосредованное” (полученное путем рассуждения) знание. Ф. Бэкон, а позднее и др. английские логики-“индуктивисты” (У. Уэвелл, Дж. С. Милль, А. Бэн и др.) считали дедукцию “второстепенным” методом, в то время как подлинное знание дает только индукция. Лейбниц и Вольф, исходя из того, что дедукция не дает “новых фактов”, именно на этом основании приходили к прямо противоположному выводу: полученные путем дедукции знания являются “истинными во всех возможных мирах”. Взаимосвязь дедукции и индукции была раскрыта Ф. Энгельсом, который писал, что “индукция и дедукция связаны между собой столь же необходимым образом, как синтез и анализ. Вместо того чтобы односторонне превозносить одну из них до небес за счет другой, надо стараться применять каждую из них на своем месте, а этого можно добиться лишь в том случае, если не упускать из виду их связь между собой, их взаимное дополнение друг друга” (Маркс К., Энгельс Ф. Соч., т. 20, с. 542-543), применениям в любой области относится следующее положение: все, чтозаключено в любой полученной посредством дедуктивного умозаключения логической истине, содержится уже в посылках, из которых она выведена. Каждое применение правила состоит в том, что общее положение относится (применяется) к некоторой конкретной (частной) ситуации. Некоторые правила логического вывода подпадают под такую характеристику и совсем явным образом. Так, напр., различные модификации т. н. правила подстановки гласят, что свойство доказуемости (или выводимости из данной системы посылок) сохраняется при любой замене элементов произвольной формулы данной формальной теории конкретными выражениями того же вида. То же относится к распространенному способу задания аксиоматических систем посредством т. н. схем аксиом, т. е. выражений, обращающихся в конкретные аксиомы после подстановки вместо входящих в них общих обозначений конкретных формул данной теории. Под дедукцией часто понимают и сам процесс логического следования. Это обусловливает его тесную связь с понятиями вывода и следствия, находящую свое отражение и в логической терминологии. Так, “теоремой о дедукции” принято называть одно из важных соотношений между логической связкой импликации (формализующей словесный оборот “если... то...”) и отношением логического следования (выводимости): если из посылки А выводится следствие В, то импликация АэВ (“если А... то В...”) доказуема (т. е. выводима уже без всяких посылок, из одних только аксиом). Аналогичный характер носят и др. связанные с понятием дедукции логические термины. Так, дедуктивно-эквивалентными называют предложения, выводимые друг из друга; дедуктивная полнота системы (относительно какого-либо свойства) состоит в том, что все выражения данной системы, обладающие этим свойством (напр., истинностью при некоторой интерпретации), доказуемы в ней.
    Свойства дедукции раскрывались в ходе построения конкретных логических формальных систем (исчислений) и общей теории таких систем (т. н. теории доказательства). Лит.: Тарский А. Введение в логику и методологию дедуктивных наук, пер. с англ. М., 1948; Асмус В. Ф. Учение логики о доказательстве и опровержении. М., 1954.
    ДЕДУКЦИЯ ТРАНСЦЕНДЕНТАЛЬНАЯ (нем. transzendentale Deduktion) — ключевой раздел “Критики чистого разума” И. Канта. Главная задача дедукции—обосновать правомерность априорного применения категорий (элементарных понятий чистого рассудка) к предметам и показать их возможность в качестве принципов априорного синтетического познания. Необходимость трансцендентальной дедукции была осознана Кантом за 10 лет до выхода “Критики”, в 1771. Центральный аргумент дедукции впервые сформулирован в рукописных набросках 1775. Текст дедукции полностью переработан Кантом во 2-м издании “Критики”. Решение главной задачи дедукции подразумевает доказательство тезиса, что категории составляют необходимые условия возможности вещей. Первая часть дедукции (“объективная дедукция”) уточняет, что такими вещами в принципе могут быть только предметы возможного опыта. Вторая часть (“субъективная дедукция”) и есть искомое доказательство тождества категорий с априорными условиями возможного опыта. Отправной точкой дедукции является понятие апперцепции. Кант утверждает, что все возможные для нас представления должны быть связаны в единстве апперцепции, т. е.вЯ. Необходимыми условиями такой связи и оказываются категории. Доказательство этого центрального положения осуществляется Кантом посредством анализа структуры объективных суждений опыта, базирующихся на использовании категорий, и постулата о параллелизме трансцендентального объекта и трансцендентального единства апперцепции (это позволяет “перевернуть” на Я необходимость категориальных синтезов для отнесения представлений к объекту). В итоге Кант делает вывод, что все возможные восприятия как осознанные, т. е. относящиеся к Я, созерцания необходимо подчинены категориям (сначала Кант показывает, чтоэто верно относительно “созерцаний вообще”, затем—относительно “наших созерцаний” в пространстве и времени). Это означает возможность антиципации предметных форм опыта, т. е. априорного познания предметов возможного опыта с помощью категорий. В рамках дедукции Кант развертывает учение о познавательных способностях, особую роль среди которых играет трансцендентальное воображение, связывающее чувственность и рассудок. Именно воображение, подчиняясь категориальным “инструкциям”, законосообразно оформляет мир явлений. Кантовская дедукция категорий вызвала многочисленные дискуссии в современной историко-философской литературе.
    В. В. Васильев

Новая философская энциклопедия: В 4 тт. М.: Мысль. . 2001.


Синонимы:
    вывод, следствие, умозаключение


Антонимы:
  • индукция
  • ,
  • посылка


Просмотров: 3194
Категория: Словари и энциклопедии » Философия » Философская энциклопедия





Другие новости по теме:

  • “НАУКА ЛОГИКИ”
  • “РАССУЖДЕНИЕ, ВЫНОСЯЩЕЕ РЕШЕНИЕ ОТНОСИТЕЛЬНО СВЯЗИ МЕЖДУ РЕЛИГИЕЙ И ФИЛОСОФИЕЙ”
  • «НАУКА ЛОГИКИ»
  • АЛГЕБРА ЛОГИКИ
  • ВЕЧНОЕ ВОЗВРАЩЕНИЕ ТОГО ЖЕ САМОГО, ИЛИ ВСЕХ ВЕЩЕЙ
  • ДЕДУКЦИЯ
  • Дедукция
  • ЕВРОПЕЙСКАЯ ФИЛОСОФИЯ ведет начало с греков, которые не только овладели с помощью уже существовавшего до них мышления новыми предметами
  • История как проблема логики
  • ЛОГИКИ-СОФИСТЫ
  • МНОГОЗНАЧНЫЕ ЛОГИКИ
  • НАУКА ЛОГИКИ
  • НЕКЛАССИЧЕСКИЕ ЛОГИКИ
  • Наука логики
  • О природе логики
  • Система логики силлогистической и индуктивной
  • Сумма логики
  • ТРОН Некоторые астрологи, более склонные к преувеличению, чем к точному соответствию и ясности, говорят о планете на троне, если она находится в знаке, которым управляет. В более древнем и более логичном варианте это планета, расположенная в той част
  • Философия логики
  • Философия науки. Связь между наукой и философией
  • Является ли знанием истинное и обоснованное мнение?
  • алгебра логики
  • вера в теории познания и философии науки
  • дедукция
  • дедукция
  • дедукция
  • дедукция трансцендентальная
  • закон логики
  • неклассические логики
  • язык логики



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       






    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь