|
АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ—основанный на акте творческого воображения способ образования абстрактных понятий, лежащий в основе формирования одной из наиболее сложных разновидностей идеи бесконечности—идеи актуальной бесконечности. В простейшем случае — при рассмотрении какого-либо необрывающегося конструктивного процесса, порождающего объекты определенного типа,—абстракция актуальной бесконечности состоит в отвлечении от принципиальной незавершаемости этого процесса. Представив его как бы «продолженным до конца» и тем самым завершившимся, вводят в рассмотрение его воображаемый результат—множество (совокупность) всех порожденных им объектов. При этом возникшее таким образом множество в дальнейшем начинают трактовать в качестве актуального, «готового» объекта рассмотрения. Так, отправляясь от процесса последовательного порождения натуральных чисел 0, 1,2, .., в результате применения к нему абстракции актуальной бесконечности приходят к актуально бесконечному объекту — натуральному ряду, который в дальнейшем выступает в качестве наличного объекта, равноправного с составляющими его числами. В более сложных случаях аналогичной процедуре подвергаются «процессы» существенно более сложных типов. В результате объектами рассмотрения становятся актуально бесконечные множества элементов произвольной природы, что приводит к необходимости изучения понятия множества как отдельного абстрактного понятия. В отличие от таких абстракций, в основе которых лежат только акты «чистого» мысленного отвлечения, абстракция актуальной бесконечности существенным образом использует акты творческого воображения, решительного отхода от действительности, и это создает определенные методологические трудности, в частности трудности истолкования суждений о возникающих в результате такого абстрагирования объектах. Эти трудности, связанные с косвенным характером «осязаемости» полученных с применением абстракции актуальной бесконечности объектов, оказываются особенно ощутимыми в тех случаях, когда абстракция актуальной бесконечности применяется многократно и в сочетании с другими идеализациями. В логическом аспекте принятие абстракции актуальной бесконечности ведет к обоснованию классической аристотелевской логики, и в частности исключенного третьего закона. Особую роль абстракция актуальной бесконечности играет в канторовской «архитектурной программе для математики», предусматривающей построение математики в виде надстройки над созданной им множеств теорией (точнее было бы, следуя самому Кантору, говорить об учении о множествах). Согласно этой программе, получившей в математике самое широкое распространение, всякий математический объект рассматривается как множество, удовлетворяющее определенному условию, и это обстоятельство делает абстракцию актуальной бесконечности основным в рамках данного подхода объектообразующим фактором. Однако в связи с упоминавшимися выше трудностями неограниченное ее применение в качестве правомерного средства образования математических понятий неоднократно вызывало возражения со стороны ряда выдающихся математиков (К. Ф. Гаусс, Л. Кронекер, Д. Гильберт, Г. Вейль и др.). Альтернативные по отношению к канторовской программы построения математики на базе использования одной лишь абстракции потенциальной осуществимости были предложены Л. Э. Я. Брауэром (см. Интуиционизм) и А. А. Марковым (см. Конструктивное направление). Без использования абстракции актуальной бесконечности обходится также и доказательств теория Д. Гильберта. Лит.: Бесконечность в математике (А. Н. Колмогоров). — БСЭ, т. 3. М., 1970; Рейтинг А. Интуиционизм. Введение. М„ 1965; А. А. О конструктивной математике.—Труды математического института им. В. А. Стеклова, т. 67. М.—Л., 1962; Кантор Г. О различных точках зрения на актуально бесконечное.—В кн.: Он же. Труды по теории множеств. М., 1985. Н. М. Нагорный
Категория: Словари и энциклопедии » Философия » Новая философская энциклопедия, 2003 г. Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|