|
АБСТРАКЦИИ ПРИНЦИПлогич. принцип, лежащий в основе определений через абстракцию и связывающий три типа универсалий - классы, свойства и отношения равенства (подобия). Согласно А. п., любое отношение равенства, определённое на нек-ром множестве, производит разбиение этого множества, т. е. делит, классифицирует его на попарно непересекающиеся и непустые части равных (в данном отношении) элементов. Указанные части наз. классами абстракции, а само разбиение (семейство этих классов) - фактор множеством по данному отношению. Являясь обобщением традиц. понятия классификации на случай произвольных отождествлений в произвольных множествах, эта форма A.n. выражает двойной процесс абстракции: во-первых, введение абстрактных понятий (видов) как классов равных, т. е. в к.-л. смысле одинаковых объектов (классов абстракции), во-вторых, введение понятия об «абстрактном» (произвольном) объекте такого класса, поскольку с т. зр. целей, определяющих выбор данного отношения равенства, каждый «конкретный» объект исходного множества понимается в качестве «абстрактного» представителя (носителя) свойства, общего всем элементам соответств. класса абстракции. Отсюда проистекает нетривиальное следствие А. п.- возможность заменять равенство в силу абстракции отождествления отношением тождества, когда принятым в этой абстракции свойством полностью исчерпывается информация об объектах исходного множества (т. е. когда свойство объекта и самый объект неразличимы). Это следствие используется, в частности, для получения стандартных универсумов s теории моделей. Известна и др. форма А. п. (её часто называют принципом свёртывания), утверждающая «существование» класса (множества) всех объектов, к-рые удовлетворяют произвольному свойству (предикату). А. п. в этой форме входит в число аксиом (теорем) абстрактной теории множеств. См. также Тождество, Экстенсиональность.
Категория: Словари и энциклопедии » Философия » Советский философский словарь, 1974 г. Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|