|
ЛОГИЦИЗМнаправление в логико-филос. основаниях математики, исходящее из выдвинутого Лейбницем тезиса о «сводимости математики к логике», согласно к-рому математика изучает т. н. аналитич. истины, т. е. утверждения, «истинные во всех возможных мирах». В систематич. виде доктрина Л. была изложена Фреге в «Осн. законах арифметики» («Grundgesetze der Arithmetik», Bd 1-2, 1893-1903), где основное для математики понятие натурального числа сводилось к объёмам понятий, а теоремы арифметики доказывались средствами нек-рой логич. системы. Эта доктрина была развита затем Расселом, обнаружившим парадокс (противоречие) в системе Фреге и предложившим в совместном с Уайтхедом трёхтомном труде «Principia Mathematica» (1910-13) т. н. теорию типов, в к-рой этот (как и другие) парадокс устранялся с помощью спец. иерархии логич. понятий. Однако для построения классич. математики в «Principia Mathematica» пришлось включить аксиомы, не удовлетворяющие критериям аналитич. истинности и характеризующие конкретный «математич. мир» и описываемый им мир реальных вещей и событий. С др. стороны, Гёделъ показал (1931), что все системы типа «Principia Mathematica» и более сильные (т. е. во всяком случае все системы аксиоматич. арифметики и теории множеств) существенно неполны: их средствами нельзя доказать нек-рые формулируемые в них содержательно-истинные утверждения. Т. о., осн. тезис Л. можно считать опровергнутым. Однако работы Рассела и его последователей (напр., У. Куайна) способствовали формированию и уточнению ряда важнейших логико-математич. и методологич. идей и развитию соответствующего формального математич. аппарата.
Категория: Словари и энциклопедии » Философия » Советский философский словарь, 1974 г. Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|