- общий принцип, в силу к-рого совместное действие случайных факторов приводит при нек-рых весьма общих условиях к рез-ту, почти не зависящему от случая. Сближение частоты наступления случайного события с его вероятностью при возрастании числа испытаний (подмеченное сначала, видимо, на азартных играх) может служить первым примером действия этого принципа. Последнее обстоятельство используется в социологич. исследованиях практически всегда, когда применяются те или иные положения теории вероятностей (см.) или статистики ма-тематич. (см.) (см. также Распределение эмпирии.). Немаловажным для социолога является еще один пример З.б.ч.: среднее арифметич. значение п одинаково распределенных (см. Распределение вероятностей) независимых случайных величин, имеющих математич. ожидание (см. Величины средние), равное 1, при увеличении п стремится к (I (строго говоря, рассматриваемые функции распределения должны удовлетворять еще и нек-рым естественным и, как правило, выполняющимся на практике условиям регулярности). На практике чаще пользуются эквивалентной (в большинстве случаев) формулировкой того же утверждения: вычисленное для выборки (см.) объема п среднее арифметич. значение нек-рой случайной величины (т.н. эмпирич. среднее) при росте п стремится к математич. ожиданию этой величины в совокупности генеральной (см.). Последнее обстоятельство выявляет практическую роль математич. ожидания как обобщения понятия выборочн. среднего арифметич. на генеральную совокупность. Лит.: Больших чисел закон//Математическая энциклопедия. М., 1977. Т. 1. Бернулли Я. О законе больших чисел. М., 1986. Ю.Н. Толстова
Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:
Код для вставки на сайт или в блог:
Код для вставки в форум (BBCode):
Прямая ссылка на эту публикацию:
Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц. Если это не так - свяжитесь с администрацией сайта. Материал будет немедленно удален. Электронная версия этой публикации предоставляется только в ознакомительных целях. Для дальнейшего её использования Вам необходимо будет приобрести бумажный (электронный, аудио) вариант у правообладателей.
На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.