РЕГРЕССИЯ ЛИНЕЙНАЯ МНОЖЕСТВЕННАЯ

- причинная модель статистической связи линейной между переменной зависимой y и переменными независимыми x1,x2,...,xk, представленная уравнением y = b1x1 b2x2 ... bkxk a = sum bixi a ( Анализ регрессионный). Коэффициенты b1,b2,...,bk называются нестандартизированными коэффициентами, а - свободным членом уравнения регрессии. Уравнение регрессии существует также в стандартизированном виде, когда вместо исходных переменных используются их z-оценки ( Переменная стандартизированная): zy = sum Bizi. Здесь zy - z-оценка переменной у; z1,z2,...,zk - z-оценки переменных x1,x2,...,xk; B1,B2,...,Bk - стандартизированные коэффициенты регрессии (свободный член отсутствует).

Для того чтобы найти стандартизированные коэффициенты, необходимо решить систему линейных уравнений:

B1 r12B2 r13B3 ... r1kBk = r1y,

r21B1 B2 r23B3 ... r2kBk = r2y,

r31B1 r32B2 B3 ... r3kBk = r3y,

...

rk1B1 rk2B2 rk3B3 ... Bk = rky,

в которой rij - коэффициенты линейной корреляции Пирсона для переменных xi и xj; riy - коэффициент корреляции  Пирсона для переменных xi и y.

Нестандартизированные коэффициенты регрессии вычисляются по формуле bi = Bi x sy / si, где sy - стандартное отклонение   переменной y; si - стандартное отклонение переменной хi. Свободный член уравнения регрессии находится по формуле a = y - sum bixi, где y - среднее арифметическое   переменной y, xi - средние арифметические для переменных xi.

В настоящее время используются два подхода к интерпретации нестандартизированных коэффициентов линейной регрессии bi. Согласно первому из них, bi представляет собой величину, на которую изменится предсказанное по модели значение y= sum bixi при увеличении значения независимой переменной xi на единицу измерения; согласно второму - величину, на которую в среднем изменяется значение переменной y при увеличении независимой переменной xi на единицу. Значения коэффициентов bi существенно зависят от масштаба шкал, по которым измеряются переменные y и xi, поэтому по ним нельзя судить о степени влияния независимых переменных на зависимую. Свободный член уравнения регрессии a равен предсказанному значению зависимой переменной yв случае, когда все независимые переменные  xi = 0.

Стандартизированные коэффициенты Bi являются показателями степени влияния независимых переменных xi на зависимую переменную y. Они интерпретируются как "вклад" соответствующей независимой переменной в дисперсию (изменчивость) зависимой переменной.

Качество (объясняющая способность) уравнения множественной линейной регрессии измеряется коэффициентом множественной детерминации , который равен квадрату коэффициента корреляции множественной R2.

Предполагается, что все переменные в уравнении множественной линейной регрессии являются количественными. При необходимости включить в модель номинальные переменные используется техника dummy-кодирования .

О.В. Терещенко

Просмотров: 1813
Категория: Словари и энциклопедии » Социология » Социология: Энциклопедия / Сост. А.А. Грицанов, В.Л. Абушенко, Г.М. Евелькин, Г.Н. Соколова, О.В. Терещенко., 2003 г.




Другие новости по теме:

  • ДОЧЕРНЕЙ РЕГРЕССИИ, ЗАКОН
  • Дочерней регрессии закон
  • Закон дочерней регрессии
  • Закон дочерней регрессии
  • КОЭФФИЦИЕНТ ЛИНЕЙНОЙ КОРРЕЛЯЦИИ
  • КОЭФФИЦИЕНТ РЕГРЕССИИ
  • Линия регрессии
  • Множественная регрессия с переменной-модератором
  • ОДНОЙ ПЕРЕМЕННОЙ, ПРИНЦИП
  • Операционализация переменной
  • Операционализация переменной
  • ПЕРЕМЕННОЙ, КРИТЕРИЙ
  • РЕГРЕССИИ КОЭФФИЦИЕНТ
  • РЕГРЕССИИ ОЦЕНКА
  • РЕГРЕССИИ, ВЕС
  • РЕГРЕССИИ, ВРЕМЯ
  • РЕГРЕССИИ, КРИВАЯ
  • РЕГРЕССИИ, НЕВРОЗ
  • РЕГРЕССИИ, УРАВНЕНИЕ
  • Регрессии невроз
  • С ПЕРЕМЕННОЙ СКОРОСТЬЮ, ПОДКРЕПЛЕНИЕ
  • ТЕЛЕОЛОГИЧЕСКОЙ РЕГРЕССИИ, ПРИНЦИП
  • ТИП независимой переменной
  • УРАВНЕНИЯ РЕГРЕССИИ
  • Уравнение (множественной) регрессии
  • Феномен возрастной регрессии
  • Частный коэффициент регрессии
  • коэффициент регрессии
  • кривая регрессии
  • поверхность регрессии



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       






    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь