|
Статистика в психологии(statistics in psychology) Первое применение С. в психологии часто связывают с именем сэра Фрэнсиса Гальтона. В психологии под "статистикой" понимается применение количественных мер и методов для описания и анализа результатов психол. исслед. Психологии как науке С. необходима. Регистрация, описание и анализ количественных данных позволяют проводить обоснованные сравнения, опирающиеся на объективные критерии. Применяемая в психологии С. обычно состоит из двух разделов: описательной (дескриптивной) статистики и теории статистического вывода. Описательная статистика. Описательная С. включает в себя методы орг-ции, суммирования и описания данных. Дескриптивные показатели позволяют быстро и эффективно представлять большие совокупности данных. К наиболее часто используемым описательным методам относятся частотные распределения, меры центральной тенденции и меры относительного положения. Регрессия и корреляции применяются для описания связей между переменными. Частотнее распределение показывает, сколько раз каждый качественный или количественный показатель (либо интервал таких показателей) встречается в массиве данных. Кроме того, нередко приводятся относительные частоты - процент ответов каждого типа. Частотное распределение обеспечивает быстрое проникновение в структуру данных, к-рого было бы трудно достичь, работая непосредственно с первичными данными. Для наглядного представления частотных данных часто используются разнообразные виды графиков. Меры центральной тенденции - это итоговые С., описывающие то, что яв-ся типичным для распределения. Мода определяется как наиболее часто встречающееся наблюдение (значение, категория и т. д.). Медиана - это значение, к-рое делит распределение пополам, так что одна его половина включает все значения выше медианы, а другая - все значения ниже медианы. Среднее вычисляется как среднее арифметическое всех наблюденных значений. Какая из мер - мода, медиана или среднее - будет лучше всего описывать распределение, зависит от его формы. Если распределение симметричное и унимодальное (имеющее одну моду), среднее медиана и мода будут просто совпадать. На среднее особенно влияют "выбросы", сдвигая его величину в сторону крайних значений распределения, что делает среднее арифметическое наименее полезной мерой сильно скошенных (асимметричных) распределений. Др. полезными описательными характеристиками распределений служат меры изменчивости, т. е. того, в какой степени различаются значения переменной в вариационном ряду. Два распределения могут иметь одинаковые средние, медианы и моды, но существенно различаться по степени изменчивости значений. Изменчивость оценивается двумя С.: дисперсией и стандартным отклонением. Меры относительного положения включают в себя процентили и нормированные оценки, используемые для описания местоположения конкретного значения переменной относительно остальных ее значений, входящих в данное распределение. Велковиц с соавторами определяют процентиль как "число, показывающее процент случаев в определенной референтной группе с равными или меньшими оценками". Т. о., процентиль дает более точную информ., чем просто сообщение о том, что в данном распределении некое значение переменной попадает выше или ниже среднего, медианы или моды. Нормированные оценки (обычно называемые z-оценками) выражают отклонение от среднего в единицах стандартного отклонения (?). Нормированные оценки полезны тем, что их можно интерпретировать относительно стандартизованного нормального распределения (z-распределения) - симметричной колоколообразной кривой с известными свойствами: средним, равным 0, и стандартным отклонением, равным 1. Так как z-оценка имеет знак ( или -), она сразу показывает, лежит ли наблюденное значение переменной выше или ниже среднего (m). А поскольку нормированная оценка выражает значения переменной в единицах стандартного отклонения, она показывает, насколько редким яв-ся каждое значение: примерно 34% всех значений попадает в интервал от т до т 1? и 34% - в интервал от т до т - 1?; по 14% - в интервалы от т 1? до т 2? и от т - 1? до т - 2?; и по 2% - в интервалы от т 2? до т 3? и от т - 2? до т - 3?. Связи между переменными. Регрессия и корреляция относятся к тем способам, к-рые чаще всего используются для описания связей между переменными. Два разных измерения, полученных по каждому элементу выборки, можно отобразить в виде точек в декартовой системе координат (х, у) - диаграммы рассеяния, являющейся графическим представлением связи между этими измерениями. Часто эти точки образуют почти прямую линию, свидетельствующую о линейной связи между переменными. Для получения линии регрессии - мат. уравнения линии наилучшего соответствия множеству точек диаграммы рассеяния - используются численные методы. После выведения линии регрессии появляется возможность предсказывать значения одной переменной по известным значениям другой и, к тому же, оценивать точность предсказания. Коэффициент корреляции (r) - это количественный показатель тесноты линейной связи между двумя переменными. Методики вычисления коэффициентов корреляции исключают проблему сравнения разных единиц измерения переменных. Значения r изменяются в пределах от -1 до 1. Знак отражает направление связи. Отрицательная корреляция означает наличие обратной зависимости, когда с увеличением значений одной переменной значения др. переменной уменьшаются. Положительная корреляция свидетельствует о прямой зависимости, когда при увеличении значений одной переменной увеличиваются значения др. переменной. Абсолютная величина r показывает силу (тесноту) связи: r = ±1 означает прямолинейную зависимость, а r = 0 указывает на отсутствие линейной связи. Величина r2 показывает процент дисперсии одной переменной, к-рый можно объяснить вариацией др. переменной. Психологи используют r2, чтобы оценить полезность конкретной меры для предсказания. Коэффициент корреляции Пирсона (r) предназначен для интервальных данных, полученных в отношении предположительно нормально распределенных переменных. Для обработки др. типов данных имеется целый ряд др. корреляционных мер, напр. точечно-бисериальный коэффициент корреляции, коэффициент j и коэффициент ранговой корреляции (r) Спирмена. Корреляции часто используются в психологии как источник информ. для формулирования гипотез эксперим. исслед. Множественная регрессия, факторный анализ и каноническая корреляция образуют родственную группу более современных методов, ставших доступными практикам благодаря прогрессу в области вычислительной техники. Эти методы позволяют анализировать связи между большим числом переменных. Теория статистического вывода Этот раздел С. включает систему методов получения выводов о больших группах (фактически, генеральных совокупностях) на основе наблюдений, проведенных в группах меньшего размера, называемых выборками. В психологии статистический вывод служит двум главным целям: 1) оценить параметры генеральной совокупности по выборочным статистикам; 2) оценить шансы получения определенного паттерна результатов исследования при заданных характеристиках выборочных данных. Среднее является наиболее часто оцениваемым параметром генеральной совокупности. В силу самого способа вычисления стандартной ошибки, выборки большего объема обычно дают меньшие стандартные ошибки, что делает статистики, вычисленные по большим выборкам, несколько более точными оценками параметров генеральной совокупности. Пользуясь стандартной ошибкой среднего и нормированными (стандартизованными) распределениями вероятностей (такими как t-распределение), можно построить доверительные интервалы - области значений с известными шансами попадания в них истинного генерального среднего. Оценивание результатов исследования. Теорию статистического вывода можно использовать для оценки вероятности того, что частные выборки принадлежат известной генеральной совокупности. Процесс статистического вывода начинается с формулирования нулевой гипотезы (H0), состоящей в предположении, что выборочные статистики получены из определенной совокупности. Нулевая гипотеза сохраняется или отвергается в зависимости от того, насколько вероятным яв-ся полученный результат. Если наблюдаемые различия велики относительно величины изменчивости выборочных данных, исследователь обычно отвергает нулевую гипотезу и делает вывод о крайне малых шансах того, что наблюдаемые различия обязаны своим происхождением случаю: результат является статистически значимым. Вычисляемые критериальные статистики с известными распределениями вероятностей выражают отношение между наблюдаемыми различиями и изменчивостью (вариабельностью). Параметрические статистики. Параметрические С. могут использоваться в тех случаях, когда удовлетворяются два требования: 1) в отношении изучаемой переменной известно или, по крайней мере, можно предположить, что она имеет нормальное распределение; 2) данные представляют собой интервальные измерения или измерения отношений. Если среднее и стандартное отклонение генеральной совокупности известно (хотя бы предположительно), можно определить точное значение вероятности получения наблюдаемого различия между известным генеральным параметром и выборочной статистикой. Нормированное отклонение (z-оценку) можно найти путем сравнения со стандартизованной нормальной кривой (называемой также z-распределением). Поскольку исследователи часто работают с малыми выборками и поскольку параметры генеральной совокупности редко известны, стандартизованные t-распределения Стьюдента обычно используются чаще нормального распределения. Точная форма t-распределения варьирует в зависимости от объема выборки (точнее, от числа степеней свободы, т. е. числа значений, к-рые можно свободно изменять в данной выборке). Семейство t-распределений можно использовать для проверки нулевой гипотезы, состоящей в том, что две выборки были извлечены из одной и той же совокупности. Такая нулевая гипотеза типична для исследований с двумя группами испытуемых, напр. эксперим. и контрольной. Когда в исслед. задействовано больше двух групп, можно применить дисперсионный анализ (F-критерий). F - это универсальный критерий, оценивающий различия между всеми возможными парами исследуемых групп одновременно. При этом сравниваются величины дисперсии внутри групп и между группами. Существует множество post hoc методик выявления парного источника значимости F-критерия. Непараметрические статистики. Когда не удается соблюсти требования адекватного применения параметрических критериев или когда собираемые данные являются порядковыми (ранговыми) или номинальными (категориальными), используют непараметрические методы. Эти методы параллельны параметрическим в том, что касается их применения и назначения. Непараметрические альтернативы t-критерию включают U-критерий Манна-Уитни, критерий Уилкоксона (W) и критерий с2 для номинальных данных. К непараметрическим альтернативам дисперсионного анализа относятся критерии Краскела - Уоллеса, Фридмана и с2. Логика применения каждого непараметрического критерия остается той же самой: соответствующая нулевая гипотеза отвергается в том случае, если расчетное значение критериальной статистики выходит за пределы заданной критической области (т. е. оказывается менее вероятным, чем предполагалось). Так как все статистические выводы основаны на оценках вероятности, возможны два ошибочных исхода: ошибки I рода, при к-рых отвергается истинная нулевая гипотеза, и ошибки II рода, при к-рых сохраняется ложная нулевая гипотеза. Первые имеют следствием ошибочное подтверждение гипотезы исслед., а последние - неспособность распознать статистически значимый результат. См. также Дисперсионный анализ, Меры центральной тенденции, Факторный анализ, Измерение, Методы многомерного анализа, Проверка нулевой гипотезы, Вероятность, Статистический вывод А. Майерс Категория: Словари и энциклопедии » Психология » Психологическая энциклопедия Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|