|
Математическая теория научения(mathematical learning theory) М. т. н. отражает распространившуюся тенденцию опираться на математику как инструмент в разработке и оценке психол. теории, в частности, теории научения. Хотя достаточно несложно выделить категорию эксперим. психологов, к-рых можно было бы назвать приверженцами количественной теории, это вовсе не означает, что все они придерживаются одной и той же теорет. ориентации. Скорее, их объединяет способ, или метод конструирования теории, к-рый можно назвать количественным. М. т. н. обладает многочисленными преимуществами перед своими качественными двойниками. Она позволяет тоньше дифференцировать набор возможных исходов эксперимента на подтверждающие и не подтверждающие теорет. предсказания. Соответственно, можно делать эксплицитные однозначные предсказания, т. к. имеются дедуктивные следствия. Это требует от теоретика координации теорет. и наблюдаемых зависимых переменных. При оценивании количественной теории, в отличие от качественной, должны учитываться нек-рые дополнительные факторы. В исслед. научения уравнение позволяет нам вычислить значение нек-рой меры поведения - зависимой переменной - для любого заданного количества попыток (проб). Это уравнение будет содержать ряд констант, или свободных параметров. Чем больше в нем свободных параметров (или констант), тем легче по нему предсказывать значения y, поскольку задача в этом случае сводится к вопросу подбора кривой. В идеале, нам хотелось бы оценить свободные параметры в одной ситуации и использовать их в другой. Однако это представляется чрезвычайно трудной, если не невозможной, задачей при изучении поведения. Следовательно, мы должны постараться сохранить общее число свободных параметров как можно меньшим, в идеале не более двух. В количественной теории необходимо идентифицировать эти параметры, то есть, установить, какой психол. процесс, механизм или переменную репрезентируют параметры данной теории. Тж необходимо точно определить круг ситуаций, к к-рым применима теория. Ранние попытки в создании количественной теории научения отличались чрезвычайно широкими подходами и, по-видимому, отражали поиски "истинной" формы кривой научения. Наиболее значительной начальной попыткой в создании количественной теории научения была теория Кларка Л. Халла, впоследствии расширенная и усовершенствованная Кеннетом Спенсом. В подходе Халла-Спенса использовалось множество свободных параметров, поэтому количественные оценки часто сводились к задачам подбора кривых. Др. важной проблемой являлось отсутствие четкой связи между наблюдаемыми и теорет. зависимыми переменными. Эту проблему смог обойти Уильям К. Эстес, к-рый использовал вероятность реакции в качестве осн. теорет. зависимой переменной, измеряемой относительной частотой возникновения данной реакции. Пожалуй, Эстес - единственный, кому удалось внести наиболее крупный вклад в развитие М. т. н. Основанная на относительно простых допущениях, эта теория сравнительно успешно применялась при изучении зависящих от времени феноменов в научении и обусловливании, выбора поведения, сигнальных (дифференцировочных) ситуаций, усвоения вероятностей, идентификации понятий, абстрагирования и разнообразных феноменов челов. памяти. В последующие годы подход Эстеса подвергся модификации, с тем чтобы рассматривать вознаграждения и наказания не как непосредственно усиливающие или ослабляющие имеющиеся ассоциативные связи, но как регулирующие поток информ. в данной ситуации. Важность контекстуальной информ. привела Эстеса к теорет. воззрениям, в к-рых главное место уделяется структуре информ. в системе памяти. См. также Кривые научения, Теории научения Д. Роббинс Категория: Словари и энциклопедии » Психология » Психологическая энциклопедия Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|