|
логический законлогический закон - выражение, содержащее только логические константы и переменные и явля-ющееся истинным в любой (непустой) предметной области. Примером Л. з. может служить любой закон логики высказываний (скажем, непротиворечия закон, закон исключенного третьего, закон де Моргана, закон косвенного доказательства и т. п.) или логики предикатов. Л. з. принято называть также (логической) тавтологией. В общем случае логическая тавтология - выражение, остающееся истинным, независимо от того, о каких объектах идет речь, или "всегда" истинное выражение. Напр., в выражение "Неверно, что р и не-р", представляющее непротиворечия закон, вместо переменной р должны подставляться высказывания. Все результаты таких подстановок ("Неверно, что 11 - простое число и вместе с тем не является простым" и т. п.) являются истинными высказываниями. В выражение "Если для всех х верно, что х есть Р, то не существует х, не являющийся Р", представляющее закон логики предикатов, вместо переменной х должно подставляться имя объекта из любой (непустой) предметной области, а вместо переменной Р - некоторое свойство. Все результаты таких подстановок представляют собой истинные высказывания ("Если для всех людей верно, что они смертны, то не существует бессмертного человека", "Если каждый металл пластичен, то нет непластичных металлов" и т. п.). Понятие Л. з. непосредственно связано с понятием логического следования: заключение логически следует из принятых посылок, если оно связано с ними логическим законом. Напр., из посылок "Если р, то q" и "Если q, то r" логически следует заключение "Если р, то r", поскольку выражение "Если (если р, то q, и если q, то r), то (если р, то r)" представляет собой транзитивности закон (скажем, из посылок "Если человек отец, то он родитель" и "Если человек родитель, то он отец или мать" по этому закону логически вытекает следствие "Если человек отец, то он отец или мать"). Современная логика исследует логические законы только как элементы систем таких законов. Каждая из логических систем содержит бесконечное множество Л. з. и представляет собой абстрактную знаковую модель, дающую описание какого-то определенного фрагмента, или типа, рассуждений. Напр., бесконечное множество систем, обладающих существенной общностью и объединяемых в рамках модальной логики, распадается на эпистемическую логику, деонтическую логику, оценок логику, логику времени и др. В современной логике построены логические системы, не содержащие закона непротиворечия (паранепротиворечивая логика), закона исключенного третьего, закона косвенного доказательства (интуиционистская логика) и т. д. Словарь по логике. — М.: Туманит, изд. центр ВЛАДОС. А.А.Ивин, А.Л.Никифоров. 1997. Категория: Словари и энциклопедии » Философия » Словарь логики Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|