Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/init.php on line 69 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/init.php on line 69 Warning: strtotime(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/academicru/academicru_news.php on line 46 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/academicru/academicru_news.php on line 47 Warning: strtotime(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/academicru/academicru_news.php on line 49 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/academicru/academicru_news.php on line 50
|
СОВМЕСТИМОСТЬСОВМЕСТИМОСТЬ свойство дедуктивных (в частности, формальных) теорий и отд. их предложений (соответственно формул) или множеств предложений (формул). Предложение дедуктивной теории наз. совместимым с постулатами (аксиомами и правилами вывода) этой теории, если с присоединением этого предложения к постулатам данной теории сохраняется ее непротиворечивость. (Строго говоря, в этом определении молчаливо подразумевается непротиворечивость исходной системы постулатов; условие это, впрочем, нужно лишь для удобства и естественности дальнейших определений; вопрос о том, считать ли любое предложение совместимым или, наоборот, несовместимым с противоречивой системой постулатов, принципиального значения не имеет). С. системы предложений – это попросту С. их конъюнкции; С. всей теории в целом – это, в соответствии с данным выше определением С. предложения, непротиворечивость конъюнкции всех аксиом (при фиксированных правилах вывода), т.е. С. относительно пустой совокупности аксиом. (Именно здесь нужна сделанная выше оговорка о понимании термина "С." по отношению к непротиворечивой системе постулатов.) Т.о., если пренебречь нек-рым психологич. и формально-грамматич. (в рус. яз.) различием, термины "непротиворечивость" и "С." являются синонимами. В англ. языке для обоих этих понятий вообще используется один и тот же термин "consistency". Обычно говорят просто о С. аксиом, что не совсем точно, поскольку решение вопроса о С. того или иного предложения зависит, вообще говоря, от используемых в рассматриваемой системе правил вывода. Так, предложение ?nР(n), совместимое в непротиворечивой, но ?-противоречивой (см. Непротиворечивость) системе, правилами вывода к-рой являются modus ponens и правила подстановки, с предложениями Р(0), ?(1), ?(2), ..., Р(n) (для любого n), оказывается несовместимым с ними, если расширить эту систему за счет присоединения правила бесконечной индукции. Лит. см. при ст. Непротиворечивость. Ю. Гастев. Москва. Философская Энциклопедия. В 5-х т. — М.: Советская энциклопедия. Под редакцией Ф. В. Константинова. 1960—1970. Синонимы: Категория: Словари и энциклопедии » Философия » Философская энциклопедия Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|