МЕТОДОЛОГИЯ ДЕДУКТИВНЫХ НАУК


МЕТОДОЛОГИЯ ДЕДУКТИВНЫХ НАУК
— методология наук, в которых используется по преимуществу или даже единственно дедуктивная аргументация. Отличительной особенностью дедуктивных теорий является возможность логического вывода большей части их содержания из небольшого числа исходных посылок, называемых аксиомами или постулатами. К таким теориям относятся, прежде всего, теории математики и математического естествознания (механики, теоретической физики), а также тех наук, в которых широко используются математические методы исследования. В отличие от фактуальных наук, логическая структура дедуктивных теорий может быть представлена наиболее точно и определенно с помощью аксиоматического метода. Согласно этому методу, все понятия теории разделяются на немногие основные, или первоначальные, понятия и большинство производных, которые получаются из основных с помощью определений. Аналогично этому все утверждения теории разбиваются на два класса: исходные утверждения, или аксиомы, и утверждения, логически выводимые из них с помощью правил дедукции, называемые теоремами или просто следствиями.
Наибольшие успехи в настоящее время достигнуты в исследовании структуры математических теорий. Они являются результатом преодоления тех трудностей и парадоксов, которые возникли в теории множеств, считавшейся незыблемым фундаментом классической математики. С этой целью математики стали тщательно анализировать исходные понятия и принципы теории множеств. Чтобы избежать парадоксов, обнаруженных в этой теории, ее стали строить в аксиоматической форме. Крупные результаты в исследовании структуры математических теорий, опирающихся на аксиоматическую теорию множеств, были получены коллективом математиков, выступающих под псевдонимом Н. Бурбаки. Они рассматривают все математические теории как некоторые комбинации абстрактных структур: «Чтобы определить структуру, задают одно или несколько отношений, в которых находятся элементы ...затем постулируют, что данное отношение или данные отношения удовлетворяют некоторым условиям (которые перечисляют и которые являются аксиомами рассматриваемой структуры). Построить аксиоматическую теорию данной структуры — это значит вывести логические следствия из аксиом структуры, отказавшись от к.-л. других предложений относительно рассматриваемых элементов». Именно отвлечение от конкретного содержания изучаемых элементов и их свойств обеспечивает широкое применение математических методов в др. науках. Понятие абстрактной структуры играет первостепенную роль в математике. Обычно в ней выделяют три основных типа структур: 1) алгебраические, в которых два любых элемента однозначно определяют третий элемент; 2) структуры порядка, где рассматриваются не только порядок следования элементов, но и их сравнение по величине и др. свойствам; 3) топологические структуры, опирающиеся на понятия непрерывности и предела. Эти основные, или порождающие, структуры образуют более сложные, или комбинированные, структуры, с помощью которых можно анализировать реально существующие математические теории. Переход от основных, порождающих, структур к сложным, объединяющим несколько основных, дает возможность не только обнаружить глубокие внутренние связи между теориями, но и выявить неизвестные раньше фундаментальные структуры. Так, в последние десятилетия в математике возникла теория категорий, которая является, по мнению ее создателей, более общей, чем теория множеств, и, кроме того, подчеркивает конструктивный аспект математической деятельности.
С формальной т.зр. все высказывания, встречающиеся в математической теории, могут претендовать на роль аксиом, а сама теория рассматриваться как система аксиом, замкнутых для дедукции. Это означает, что каждое множество высказываний, которое содержит все свои логические следствия, будет представлять замкнутую систему, или теорию. Как показал А. Тарский, двумя исходными понятиями — осмысленного высказывания и следствия — можно охарактеризовать важнейшие результаты в М.д.н. С помощью этих терминов могут быть определены такие характеристики теорий, как непротиворечивость, полнота, аксиоматизируемость и некоторые др.
Однако чисто формальный подход, несмотря на его значительные достоинства, нуждается в дополнительном, содержательном рассмотрении. Формальный анализ, напр., не может объяснить, почему в качестве аксиом выбираются не любые, а лишь определенные утверждения. Какими целями руководствуются при их выборе? Почему при формальном тождестве структур предпочтение отдается одним, а не др. теориям? И т.д. Именно поэтому сами ученые рассматривают структуры как своего рода идеализации, представляющие собой определенное приближение к действительно существующим дедуктивным наукам и, прежде всего, к математике. Особого внимания заслуживают результаты исследований К. Гёделя, сформулированные в двух знаменитых его теоремах. В первой из них доказывается, что всякая формальная система, содержащая по крайней мере формальную арифметику, неполна. Это означает, что в такой системе всегда можно построить некоторую формулу, которая будет в ней неразрешима, т.е. ни истинность, ни ложность ее нельзя будет доказать. Из этой теоремы следует важный методологический результат: содержательную математику нельзя формализовать полностью. Это свидетельствует о том, что в развитии дедуктивного знания приоритет принадлежит содержанию, а не форме. Вторая теорема устанавливает, что если формальная система непротиворечива, то не существует доказательства ее непротиворечивости с помощью средств, формализуемых в этой системе. Отсюда можно сделать предположение о существовании целой иерархии формальных систем, в которой каждая из последующих превосходит предыдущую систему по силе средств формализации. Следовательно, в ходе развития дедуктивных наук их формализация не может быть завершена на каком-то исторически определенном этапе.

Философия: Энциклопедический словарь. — М.: Гардарики. . 2004.


Просмотров: 1779
Категория: Словари и энциклопедии » Философия » Философская энциклопедия





Другие новости по теме:

  • гипотетико-дедуктивная модель теории
  • Глубокие Структуры Мозга
  • глубокие структуры мозга
  • деятельности теории
  • ЕВРОПЕЙСКАЯ ФИЛОСОФИЯ ведет начало с греков, которые не только овладели с помощью уже существовавшего до них мышления новыми предметами
  • КОНФЛИКТА ТЕОРИИ
  • КОНЦЕПТУАЛЬНЫЕ СТРУКТУРЫ
  • концептуальные структуры
  • кубическая модель структуры интеллекта
  • Кубическая Модель Структуры Интеллекта
  • методология гуманитарных и социальных наук
  • методология гуманитарных наук
  • МЕТОДОЛОГИЯ ЕСТЕСТВЕННЫХ НАУК
  • методология естественных наук
  • Модель структуры интеллекта (structure-of-intellect model)
  • МОДЕРНИЗАЦИИ ТЕОРИИ
  • НЕПРОТИВОРЕЧИВОСТЬ ТЕОРИИ
  • ОБМЕНА ТЕОРИИ
  • операция в теории деятельности
  • оправдание теории
  • пороговые теории
  • ПРОМИТТОР Планета, к которой может быть определена дирекция сигнификатора, в результате чего образуется аспект между прогрессивным положением сигнификатора и положением при рождении промиттора, обещающий определенные события или условия, соответствую
  • Против метода. Очерк анархистской теории познания
  • СТРУКТУРЫ ЛАТЕНТНЫЕ
  • СТРУКТУРЫ МОДЕЛЬ
  • СТРУКТУРЫ ПЕРЕМЕННЫЕ
  • Теории игр
  • эволюционные теории
  • ЭГОИЗМА ТЕОРИИ
  • ЭЛИТЫ ТЕОРИИ



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       






    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь