— величина, характеризующая степень отклонения кривой линии от касательной или кривой поверхности от касательной плоскости. Кривизна кривой в какой-либо ее точке равна обратной величине радиуса кривизны в этой точке. Данное понятие обобщается на любые геометрии. Например, в римановой геометрии вводится понятие римановой кривизны пространства как меры отклонения римаяова пространства от евклидова. Данная величина оказывается внутренним свойством пространства и выражается так называемым ковариантным тензором кривизны 4-го ранга, т. е. величиной весьма абстрактного характера. Самое большее на что способен человеческий ум, оценить кривизну трехмерного риманова пространства, заданного в виде шара, охватываемого двумерной сферой постоянной кривизны: ее радиус и есть кривизна шара. См. также понятие Кривизна пространства-времени.
Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:
Код для вставки на сайт или в блог:
Код для вставки в форум (BBCode):
Прямая ссылка на эту публикацию:
Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц. Если это не так - свяжитесь с администрацией сайта. Материал будет немедленно удален. Электронная версия этой публикации предоставляется только в ознакомительных целях. Для дальнейшего её использования Вам необходимо будет приобрести бумажный (электронный, аудио) вариант у правообладателей.
На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.