АНАЛИЗ ФАКТОРНЫЙ

– группа мето­дов многомерного статистич. анализа, к-рые по­зволяют представить в компактный форме обоб­щенную информацию о структуре связей между наблюдаемыми признаками изучаемого соц. объ­екта на основе выделения нек-рых скрытых, непосредственно не наблюдаемых факторов. А.ф. в его классич. варианте разработан для данных, полученных при измерениях по интер­вальным шкалам. Это ограничение связано с предположениями формальной модели, на к-рой базируется классич. А.ф. Считают, что изучае­мый соц. объект описывается набором призна­ков х12, ... ,хn (n – общее число используемых признаков), т. е. информация о нем может быть представлена в форме матрицы данных "объ­ект-признак" (хij), N = 1, 2, ..., n, где х – зна­чение j-то признака х. на г-м объекте, N – об­щее число объектов. Каждому признаку х поста­вим в соответствие признак zj, являющийся при­ведением первого признака к стандартной фор­ме в рез-те следующего преобразования: Zji=(Xji-xj)/oj , где Xj и  lower case «Sigma»j – соответственно среднее значение и стандартное отклонение  при­знака xj. Признаки xj, заданные в стандартной форме, имеют нулевое среднее и единичную дис­персию. Основное предположение А.ф. заключается в том, что каждый наблюдаемый признак можно выразить в виде суммы нек-рых других не наблюдаемых признаков (факторов), умноженных каждый на свой коэффициент. Эти коэффициенты принято называть факторными нагрузками. Значения факторных нагрузок, как правило и являются рез-том вычислительной процедуры А.ф., т. е. именно они служат основой для содержательных выводов.             

Указанное предположение можно выразить следующим образом:

   (1)

где Fp – р-й общий фактор ( р меняется от 1 до m), m – количество общих факторов, Uj – j-й характерный фактор, а – факторная нагрузка р-го общего фактора на j-й признак, d. – фак­торная нагрузка j-ro характерного фактора. Факторы принято разделять на общие (Fp) и характерные (Uj). Отличие характерных фак­торов от общих заключается в том, что каждый характерный фактор имеет ненулевое значение только для одного наблюдаемого признака. Количество общих факторов (m) предпола­гается существенно меньшим количества исход­ных признаков (n). Обычные допущения, позволяющие придать указанной модели (1) статистич. смысл, заклю­чаются в следующем: факторы представляют собой величины случайные (см.) с нормальным законом распределения, заданные в стандарт­ной форме; характерные факторы независимы как между собой, так и по отношению к общим факторам. При этих предположениях появляется воз­можность определения с помощью различ. рода статистич. процедур факторных нагрузок по на­блюдаемым значениям исходных признаков. Зная значения факторных нагрузок и исходных при­знаков, можно вычислить для каждого объекта значения факторов и тем самым перейти к бо­лее экономному описанию. Вместе с тем из указанных предположений следует, что А.ф. в его классич. варианте приме­ним лишь для количественных данных (факторы предполагаются непрерывными и имеющи­ми нормальное распределение) . В рамках введенной линейной нормальной модели А.ф. (1) обычно предполагаются некорре­лированными между собой не только характер­ные, но и общие факторы. В этом случае оказы­ваются справедливыми следующие соотношения:

где аjp, акp, аlp,  – факторные нагрузки р-го фак­тора соответственно на j-й, к-й и 1-й признаки, lower case «Sigma»kl –  коэффициент корреляции между к-м и 1-м признаками.

В правой части соотношения (2) стоят квад­раты факторных нагрузок. Каждое слагаемое определяет обусловленную соответствующим фактором долю дисперсии наблюдаемого призна­ка, т. е. вся дисперсия может быть разделена на две части: дисперсию, обусловленную наличием общих факторов (сумму квадратов общих фак­торов  принято называть общностью), и дис­персию, обусловленную вариацией характерно­го фактора (квадрат нагрузки характерного фак­тора d2 обычно называют характерностью). Из соотношения (3) следует, что коэффициент кор­реляции между двумя любыми исходными при­знаками выражается через факторные нагруз­ки общих факторов.

Т.обр., факторы могут интерпретироваться в качестве латентных признаков, детерминирую­щих значения наблюдаемых признаков и обу­словливающих наличие корреляции между ними. Графически взаимоотношения между исходными признаками и факторами могут быть пред­ставлены следующим образом (стрелками обо­значено направление связи. Если какая-то фак­торная нагрузка равна нулю, то соответствую­щая связь отсутствует):

При применении А.ф. к реальным данным все факторные нагрузки, к-рые в совокупности можно рассматривать как матрицу факторных нагрузок, и характерности являются неизвест­ными и должны быть определены. Эта задача решается на основе соотношений (2) и (3), в к-рые подставляются корреляции, определяемые по исходным данным. Вместе с тем из анализа соотношений (2) и (3) можно сделать вывод, что существует бесконечно много матриц факторных нагрузок, удовлетворяющих этим соотношени­ям и получаемых одна из другой в рез-те специ­альных преобразований (т.н. ортогональных вра­щений) системы факторов. Неоднозначность решения задачи нахожде­ния матрицы факторных нагрузок обусловлива­ет существование достаточно большого числа специальных способов поиска одного из допус­тимых решений (метод главных факторов, ме­тод максимального правдоподобия, канонич. фак­торный анализ, а-факторный анализ  и др.)- Вы­числительные процедуры, отражающие содер­жание этих методов, реализованы в стандартных программах, к-рые входят в большинство пакетов статистич. анализа данных. Матрицы факторных нагрузок, получаемые в рез-те применения тех или иных методов А.ф., определяются содержащимися в их процедурах ограничениями на возможные комбинации иско­мых нагрузок (как предпосылки для нахожде­ния единственного решения). Поэтому с формаль­ной т.зр. различ. решения эквивалентны в том смысле, что они удовлетворяют в рамках постулируемой факторной модели всем ее исходным предложениям. В то же время при содержатель­ной интерпретации эти решения могут оказать­ся существенно различными. Обычная процедура содержательной интер­претации матрицы факторных нагрузок заклю­чается в следующем. Нагрузки, относящиеся к одному фактору, располагаются в порядке убы­вания абсолютных значений. Рассматриваются признаки, имеющие максимальные абсолютные значения факторных нагрузок. Далее анализи­руется семантика этой группы признаков, их "физический смысл". Выявляется общее содер­жание этой группы признаков, то общее свойст­во, к-рое, по мнению исследователя, объединяет признаки в одну группу. Это свойство (группа свойств) затем получает название и фигурирует в качестве фактора. Матрицы факторных нагрузок, получаемые на одном и том же массиве данных, могут ото­бражать различн. свойства и аспекты изучаемо­го объекта. Поэтому, проводя А.ф., вообще гово­ря, не следует ограничиваться лишь интерпре­тацией первоначально найденного (первичного) решения. В то же время рассмотреть все суще­ствующие решения, очевидно, не представляет­ся возможным. В рез-те возникает проблема выбора нескольких матриц факторных нагрузок, наиболее характерных и достаточных для адек­ватного отображения исследуемого объекта. Ее решение связано с возможностью ортогональных вращений системы факторов до получения наи­более естественно интерпретируемых решений. При факторизации реальных данных в качестве критерия отбора матриц, соответствующих та­ким решениям, наиболее часто используется тре­бование достижения "простой структуры" Терстоуна в той или иной модификации. В решени­ях, удовлетворяющих этому требованию, каж­дый исходный признак должен представляться небольшим числом факторов, т. е. в соответст­вующей матрице факторных нагрузок большин­ство из них должно быть равно или близко к нулю, что значительно облегчает задачу интер­претации. Каждая из факторных моделей, соответст­вующих определенной матрице факторных на­грузок, представляет собой не что иное, как ги­потезу относительно детерминации наблюдаемых переменных. Вопрос о выборе той или иной модели – вопрос о предпочтении одних моделей другим. Он не может быть решен вполне одно­значно, его решение требует содержательного анализа. Выбор модели должен осуществляться с привлечением всех имеющихся данных об изу­чаемом круге явлений. Окончательное решение может быть принято только на основе последую­щего специального исследования адекватности модели, принятой в качестве рабочей гипотезы. После получения факторного решения ес­тественно возникает вопрос о его общности. Рас­пространение выводов о количестве и содержа­нии факторов, полученных на одной выборке, на другие должно производиться крайне осторожно. Оно допустимо только в том случае, если на­бор данных, к-рый подвергается А.ф., представ­ляет собой репрезентативную выборку из сово­купности с многомерным нормальным распреде­лением. А.ф. в рамках изложенной модели приме­ним лишь к количественным данным. Вместе с тем факторизации в ряде случаев могут подвер­гаться и качественные данные. Способы такого применения А.ф. могут быть весьма различн. (см. Анализ факторный качественных данных). Уже накопленный опыт использования свидетельст­вует о возможности получения полезных рез-тов и в данном случае. Необходимо, однако, иметь в виду, что А.ф. качественных данных с еще боль­шей определенностью, чем анализ количествен­ных данных, должен рассматриваться в качест­ве средства генерации гипотез. Лит: Харман Г. Современный факторный анализ. М., 1972; Жуковская В.М., Мучник И.Б. Факторный ана­лиз в социально-экономических исследованиях. М., 1976; Иберла К. Факторный анализ. М., 1980; Елисеева И.И., Рукавишников В.О. Логика прикладного статистического анализа. М., 1982; Викторов В.И. Факторный анализ// Ин­терпретация и анализ данных  в социологических исследо­ваниях. М., 1987. В.И. Викторов, С.А. Шашнов.

Просмотров: 1920
Категория: Словари и энциклопедии » Социология » Российская социологическая энциклопедия/ Под общей редакцией академика РАН Г.В.Осипова, 1998




Другие новости по теме:

  • (Грамматически о гласном): обоюдный, т.е. тот, который может быть и долгим и кратким
  • АГГРЕГАТИВНЫЙ АНАЛИЗ ДАННЫХ
  • АНАЛИЗ ДАННЫХ
  • АНАЛИЗ ДАННЫХ
  • АНАЛИЗ ДАННЫХ
  • АНАЛИЗ ДАННЫХ
  • АНАЛИЗ ДАННЫХ
  • АНАЛИЗ ДАННЫХ ВТОРИЧНЫЙ
  • АНАЛИЗ ФАКТОРНЫЙ КАЧЕСТВЕННЫХ ДАННЫХ
  • АРХИВ ДАННЫХ ИЛИ БАНКИ ДАННЫХ
  • Анализ данных
  • Анализ данных
  • Анализ данных
  • ВТОРИЧНЫЙ АНАЛИЗ ДАННЫХ
  • Значение биологических и социальных факторов в формировании и развитии психических расстройств
  • ИССЛЕДОВАТЕЛЬСКИЙ АНАЛИЗ ДАННЫХ
  • МАТРИЦА ФАКТОРНЫХ НАГРУЗОК
  • МАТРИЧНО-АППРОКСИМАЦИОННЫЙ ПОДХОД К АНАЛИЗУ ДАННЫХ (МАТРИЧНО-АППРОКСИМАЦИОННЫЕ МЕТОДЫ АНАЛИЗА ДАННЫХ)
  • МЕТОДЫ АНАЛИЗА СОЦИОЛИНГВИСТИЧЕСКИХ ДАННЫХ
  • Методы анализа социолингвистических данных
  • Многомерный анализ данных
  • НЕСПОСОБНОСТЬ ЧЕЛОВЕКА БЫТЬ САМИМ СОБОЙ
  • Смешанное влияние факторов
  • ТЕОРИЯ ФАКТОРОВ
  • ТЕОРИЯ ФАКТОРОВ
  • Теория близкой работы, или чрезмерных нагрузок на «близкое зрение»
  • ФАКТОРОВ ТЕОРИЯ
  • ФАКТОРОВ ТЕОРИЯ
  • ФАКТОРОВ ТЕОРИЯ
  • ФАКТОРОВ ТЕОРИЯ



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       






    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь