Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/init.php on line 69 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/init.php on line 69 Warning: strtotime(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/academicru/academicru_news.php on line 46 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/academicru/academicru_news.php on line 47 Warning: strtotime(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/academicru/academicru_news.php on line 49 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/academicru/academicru_news.php on line 50
|
деление логическоеделение логическое логическая операция, посредством которой объем делимого понятия распределяется на известные классы (множества) с точки зрения некоторого признака. Посредством операции Д. л. раскрывается объем того или иного понятия, выясняется, из каких подмножеств состоит множество, соответствующее делимому понятию. Так, по строению листьев множество деревьев может быть подразделено на два подмножества: лиственные деревья и хвойные деревья. Иногда говорят не о Д. л. объема понятия, а просто о Д. л. понятия. Делимое понятие есть понятие, подлежащее делению. Подмножества, которые получаются в результате Д. л. понятия, называются членами деления. Признак, по которому производится Д., называют основанием Д. л. Д. л. может быть произведено по признаку, выступающему в различных вариантах (разновидностях). Так, треугольники по признаку величины угла могут быть подразделены на прямоугольные, тупоугольные и остроугольные именно потому, что признак величины угла может выступать как признак прямоугольности, тупоугольности и остро-угольности. Получившиеся в результате Д. л. подмножества (члены деления) могут, в свою очередь, подвергаться Д. л. Такой вид Д. л. называется последовательным. При выполнении операции Д. л. должны соблюдаться следующие правила: 1. Д. л. должно быть соразмерным. Это значит, что объем делимого понятия должен быть равен сумме объемов членов Д. л. Напр., это правило будет нарушено, если все леса разделить на хвойные и лиственные (пропущен член Д. л.: смешанные). 2. Д. л. на каждом его этапе должно производиться по одному основанию. Мы нарушим это правило, если, напр., разделим международные договоры на справедливые, несправедливые, устные и письменные: сначала международные договоры мы разделили по признаку их равноправности, а затем - по признаку формы их заключения. 3. Члены Д. л. должны исключать друг друга. Пример, связанный с нарушением этого правила: "Войны бывают справедливые, несправедливые и освободительные" (освободительные войны входят в объем справедливых). 4. Д. л. должно быть непрерывным. Не будет непрерывным, напр., такое Д. л.: "Грамматические предложения бывают простыми, сложносочиненными и сложноподчиненными". На первом этапе следовало бы грамматические предложения подразделить на простые и сложные, а затем сложные подразделить на сложносочиненные и сложноподчиненные. Д. л. может быть дихотомическим (деление надвое): объем делимого понятия А делится на два исчерпывающих его взаимоисключающих множества В и не-В. Так, понятие позвоночных (A) мы можем подразделить сначала на млекопитающих (В) и немлекопитающих (не-В). Затем понятие не-В можем подразделить на птиц (С) и не-птиц (не-С). Продолжается такое деление до тех пор, пока отрицательное понятие в некоторой из пар дихотомически полученных понятий не окажется пустым. Мы подразделим всех позвоночных животных на млекопитающих, птиц, пресмыкающихся, земноводных, рыб и круглоротых. Словарь по логике. — М.: Туманит, изд. центр ВЛАДОС. А.А.Ивин, А.Л.Никифоров. 1997. Категория: Словари и энциклопедии » Философия » Словарь логики Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|