Аткинсон Рита Л., Аткинсон Ричард С., Смит Эдвард Е., Бем Дэрил Дж., Нолен-Хоэксема Сьюзен. Введение в психологию. Учебник для студентов университетов.

Категория: Библиотека » Общая психология | Просмотров: 59334

Автор:   
Название:   
Формат:   HTML, DOC
Язык:   Русский

Скачать по прямой ссылке

Таблица П3. Вычисление дисперсии и стандартного отклонения
Оценки Класса А (Среднее = 75)
d d2
77-75 2 4
76-75 1 1
75-75 0 0
74-75 -1 1
73-75 -2 4
Сумма d2 = 10
Дисперсия = среднее по d2 = 10 / 5 = 2,0
Стандартное отклонение (σ) = = 1,4

Оценки Класса Б (Среднее = 75)
d d2
90-75 15 225
85-75 10 100
75-75 0 0
65-75 -10 100
60-75 -15 225
Сумма d2 = 650
Дисперсия = среднее по d2 = 650 / 5 = 130
Стандартное отклонение (σ) = = 11,4

Неудобство дисперсии состоит в том, что она выражена в единицах измерения, возведенных в квадрат. Поэтому величина дисперсии, равная 2 у класса А, не означает, что его усредненные показатели отличаются от среднего на 2 пункта. Она показывает, что 2 — это результат усреднения возведенных в квадрат значений, на которые показатели отличаются от среднего. Чтобы получить меру отклонения, выраженную в первоначальных единицах измерения (в данном случае это количество единиц, набранных на экзамене), надо просто извлечь из дисперсии квадратный корень. Результат называют стандартным отклонением. Оно обозначается греческой буквой σ (сигма), используемой также в некоторых других статистических вычислениях, которые мы обсудим вкратце. Стандартное отклонение вычисляется по следующей формуле:

Пример вычисления стандартного отклонения. (табл. П3). Показатели выборок из двух классов представлены в виде, удобном для вычисления стандартного отклонения. На первом этапе вычитаем среднее из каждого показателя (среднее = 75 в обоих классах). В результате получаем положительные величины d для показателей, которые больше среднего, и отрицательные для тех, которые меньше его. Когда полученные величины будут возведены в квадрат, знак минус пропадет (следующая колонка в табл. П3). Возведенные в квадрат разности складываются и делятся на N — количество элементов выборки, в нашем случае N = 5. Извлекая квадратный корень, получаем стандартное отклонение. [В этом ознакомительном изложении мы везде будем использовать σ (сигма). Однако в научной литературе для обозначения стандартного отклонения выборки используется маленькая буква s, а через а обозначают стандартное отклонение для всей группы. Кроме того, при вычислении стандартного отклонения для выборки (s) сумма всех d2 делится не на N, а на N-1. В случае достаточно больших выборок, однако, использование N-1 вместо N мало влияет на величину стандартного отклонения. Для упрощения объяснений мы не будем различать здесь стандартное отклонение выборки и группы и используем для них одну и ту же формулу. Обсуждение этого момента см. в: Phillips (1992).]


Статистические выводы

Теперь, познакомившись со статистикой как способом описания данных, мы готовы обратиться к интерпретации данных — тому, как из них делают выводы.

Группа и выборки

Прежде всего, необходимо различать группу и выборку из этой группы. Бюро переписи Соединенных Штатов пытается описать население в целом путем получения описательного материала по возрасту, семейному положению и т. д. обо всех жителях страны. Слово группа (population) годится для бюро переписи, поскольку оно представляет всех людей, живущих в США.
В статистике слово «группа» не ограничено людьми, животными или предметами. Группой могут быть все величины температур, зарегистрированные термометром в течение последнего десятилетия, все слова английского языка или любой другой определенный запас данных. Часто у нас нет доступа ко всей группе, и тогда мы пытаемся представить ее по выборке, взятой в случайном (непредвзятом) порядке. Можно задаться каким-либо вопросом о случайно отобранной части людей, как это сделало Бюро переписи в некоторых недавних переписях; можно вывести среднюю температуру, снимая показания термометра в определенное время и не ведя непрерывной записи; можно оценить количество слов в энциклопедии, подсчитав слова на случайно выбранных страницах. Во всех этих примерах делается выборка из группы. Если какие-либо из этих процессов повторить, результаты будут слегка различны вследствие того, что выборка не полностью отражает группу в целом и, следовательно, содержит ошибки выборки. Именно здесь вступают в игру статистические выводы.
Выборку данных из группы собирают, чтобы сделать вывод об этой группе. Можно изучить выборку данных переписи, чтобы узнать, стареет ли население, например, и существует ли тенденция миграции в пригородные зоны. Сходным образом, экспериментальные результаты изучаются, чтобы определить, какое воздействие экспериментальные манипуляции оказали на поведение — повлияла ли громкость на порог восприятия высоты звука, или оказывают ли особенности воспитания существенное влияние на последующую жизнь. Чтобы делать статистические выводы, надо оценить отношения, на которые указывают данные выборки. Такие выводы всегда имеют некоторую степень неопределенности из-за ошибок выборки. Если статистические испытания показывают, что величина эффекта, обнаруженная в данной выборке, достаточно велика (относительно оценки ошибки выборки), то можно быть уверенным, что наблюдаемый в данной выборке эффект существует и у группы в целом.
Таким образом, статистический вывод связан с необходимостью сделать вывод или суждение относительно некоторой характеристики группы, основываясь только на информации, полученной о выборке из этой группы. В качестве знакомства со статистическим выводом мы рассмотрим нормальное распределение и его применение при интерпретации стандартного отклонения.

Нормальное распределение

Когда большое количество данных собирают, представляют в табличном виде и отображают в виде гистограммы или огибающей, они часто образуют колоколообразное симметричное распределение, известное как нормальное распределение. Большинство его элементов располагаются вблизи среднего (верхняя точка колокола), и этот колокол резко спадает у самой большой и у самой малой величины. Такая форма кривой представляет особый интерес, поскольку она возникает и тогда, когда результат процесса основан на множестве случайных событий, все из которых происходят независимо. Демонстрационное устройство, показанное на рис. П4, позволяет увидеть, как из случайных событий складывается нормальное распределение. Случайный фактор — упадет ли стальной шарик влево или вправо каждый раз, когда он попадает в развилку, — приводит к симметричному распределению: больше шариков падают прямо посередине, но время от времени один из них достигает одного из крайних отделений. Это удобная визуализация того, что имеется в виду под случайным распределением, близким к нормальному распределению.


Рис. П4. Устройство для демонстрации нормального распределения случайной величины. Устройство держат вверх ногами, пока все стальные шарики не скатятся в резервуар. Затем устройство переворачивают и держат вертикально, пока шарики, пройдя по полю со штырьками, не скатятся в 9 колонок-выемок внизу. Точное количество шариков, попавших в каждую колонку, в разных демонстрациях будет неодинаковым. Однако в среднем высота колонок из шариков будет примерно повторять нормальное распределение, когда самая высокая колонка будет в центре, а высоты остальных колонок будут снижаться в направлении к краям.

Нормальное распределение (рис. П5) — это математическое представление идеализованного распределения, приближенно создаваемого устройством, показанным на рис. П4. Нормальное распределение показывает вероятность того, что элементы в группе с нормальным распределением будут отличаться от среднего на любую заданную величину. В процентах на рис. П5 показана доля площади, лежащей под кривой между указанными величинами шкалы; общая площадь под кривой соответствует группе в целом. Примерно две трети всех случаев (68%) попадают в интервал между плюс и минус одним стандартным отклонением от среднего (±1σ); 95% всех случаев — в интервал ±2σ; и практически все случаи (99,7%) — в ±3σ.


Рис. П5. Нормальное распределение. Кривую нормального распределения можно построить, используя стандартное отклонение и среднее. Площадью под кривой, лежащей левее -3σ и правее +3σ, можно пренебречь.

Более подробный список площадей под частями кривой нормального распределения приведен в табл. П4.

Таблица П4. Площадь участков под кривой нормального распределения как часть общей площади под ней
Стандартное отклонение (1) Площадь левого участка от данного значения (2) Площадь правого участка от данного значения (3) Площадь участка между данным значением и средней
-3,0 σ 0,001 0,999 0,499
-2,5 σ 0,006 0,994 0,497
-2,0 σ 0,023 0,977 0,477
-1,5 σ 0,067 0,933 0,433
-1,0 σ 0,159 0,841 0,341
-0,5 σ 0,309 0,691 0,191
0,0 σ 0,500 0,500 0,000
+0,5 σ 0,691 0,309 0,191
+1,0 σ 0,841 0,159 0,341
+1,5 σ 0,933 0,067 0,433
+2,0 σ 0,977 0,023 0,477
+2,5 σ 0,994 0,006 0,494
+3,0 σ 0,999 0,001 0,499

Давайте при помощи табл. П4 проследим, как получаются величины 68% и 95%, показанные на рис. П5. В табл. П4 в третьей колонке находим, что между -1σ и средним лежит 0,341 общей площади и между +1σ и средним тоже 0,341 общей площади. В сумме эти величины дают 0,682, что на рис. П5 показано как 68%. Сходным образом площадь от -2σ до +2σ составит 2 х 0,477 = 0,954, показанные как 95%.

Шкалирование данных

Чтобы интерпретировать показатель, часто нужно знать, высокий он или низкий по отношению к другим показателям. Если человеку, сдающему водительский экзамен, требуется 0,500 сек, чтобы нажать на тормоз после сигнала опасности, как определить, быстро это или медленно? Считать ли, что студент сдал курс по физике, если его показатель на экзамене равен 60? Для ответа на такие вопросы надо вывести шкалу, с которой эти показатели можно сравнивать.
Ранжирование данных. Располагая показатели по рангу от высокого к низкому, мы получаем одну из таких шкал. Отдельный показатель интерпретируется по тому, на каком месте он располагается среди группы показателей. Например, курсанты военной академии Вест Пойнт знают, где они находятся в своем классе — возможно, 35-ми или 125-ми в классе из 400.
Стандартный показатель. Стандартное отклонение — удобная единица шкалирования, поскольку мы можем оценить, насколько далеко от среднего располагаются 1σ или 2σ (табл. П4). Величину произведения, в котором один сомножитель — стандартное отклонение, называют стандартным показателем. Многие шкалы, применяемые в психологических измерениях, основаны на принципе стандартного показателя.
Пример вычисления стандартного показателя. В табл. П1 приведены показатели, полученные 15 студентами на вступительных экзаменах. Не имея дополнительной информации, мы не знаем, являются ли эти показатели репрезентативными для группы всех поступавших. Однако предположим, что средний показатель на этих экзаменах был 75, а стандартное отклонение 10.
Каким же будет стандартный показатель у студента, набравшего на экзаменах 90 баллов? Насколько выше среднего лежит этот показатель, надо выразить в количестве стандартных отклонений:
Стандартный показатель для студента, с оценкой 90 равен:

В качестве второго примера возьмем учащегося с оценкой 53.
Стандартный показатель для оценки 53 равен:

В этом случае показатель учащегося лежит ниже среднего на 2,2 стандартных отклонения. Таким образом, знак стандартного показателя (+ или -) говорит о том, выше или ниже среднего находится данный показатель, а его величина показывает, насколько далеко от среднего он расположен в единицах стандартных отклонений.



Связаться с администратором



Похожие публикации:

  • Ольга Старова. Средства массовой информации как источник агрессии. - Ольга Старова
  • Проблема нейрогенеза: могут ли во взрослом мозге появляться новые нейроны?
  • Мозг женщины под слоем косметики не узнает свою обладательницу
  • Тест «Коммуникативная компетентность».
  • К чему снится рождение мальчика
  • Как функционирует мозг эрудированного человека
  • 15 актуальных психологических приемов как вести себя в конфликтной ситуации
  • Симбиоз; Symbiosis
  • Девять привычек уверенных в себе людей
  • Дэн Вальдшмидт. Как наш мозг принимает решения и зачем нам об этом знать?
  • К чему снится драка?
  • Какие последствия приворота мужчины?
  • К чему снятся сапоги
  • Нейронное прогнозирование. Как мозг предсказывает будущее?
  • Приворот белой магии
  • Таро – искусство задавать вопросы
  • Типичные ошибки в проведении собеседования.
  • Султанофф С.М. Легкость против тяжести: использование юмора в кризисных ситуациях
  • Исследования одиночества: как работает мозг одиноких людей
  • Почему с возрастом время летит все быстрее
  • К чему снятся семечки
  • Неприятные переживания, которые указывают на то, что Вы развиваетесь в правильном направлении
  • К чему снятся цыгане
  • Как помочь ребенку приобрести уверенность
  • Графический тест личности
  • К чему снятся осы
  • Дмитренко А. В. Эксперимент Повиновение
  • Расстройство личности: симптомы и диагностика. Типы личностных расстройств
  • Хронический стресс — болезнь молодых
  • Анна Паулсен. ЕЩЁ О НАРЦИССИЧЕСКОЙ ТРАВМЕ
  • К чему снится секс?
  • Побороть страх и неуверенность
  • Нейропсихология: почему мы понимаем других?
  • Игра «Разотождествление».
  • Последствия заговора на месячную кровь
  • К чему снится подруга?
  • К чему снится лифт
  • Авакян Лариса Васильевна. Профессиональная подготовка детей дошкольного возраста
  • Регрессивное восстановление персоны; Regressive restoration of the persona
  • Перепечаева Светлана Николаевна. «Развивающая среда в домашних условиях»
  • К чему снится дочь
  • К чему снится свекровь?
  • К чему снится вишня?
  • Х. Рудигер, С. Виттманн. Что значит «уверенность в себе»
  • К чему снятся глаза?
  • Кое-что об отношениях людей
  • Луиза Хей. Как измениться в лучшую сторону
  • Приворот на быстрый возврат любимого
  • Р. Мендиус. Что такое эмпатия и как ее развивать
  • К чему снится сестра



  • Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:      
    Код для вставки в форум (BBCode):      
    Прямая ссылка на эту публикацию:      


     (голосов: 0)

    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь