|
Аткинсон Рита Л., Аткинсон Ричард С., Смит Эдвард Е., Бем Дэрил Дж., Нолен-Хоэксема Сьюзен. Введение в психологию. Учебник для студентов университетов.Категория: Библиотека » Общая психология | Просмотров: 59334
Автор: Аткинсон Рита Л., Аткинсон Ричард С., Смит Эдвард Е., Бем Дэрил Дж., Нолен-Хоэксема Сьюзен.
Название: Введение в психологию. Учебник для студентов университетов. Формат: HTML, DOC Язык: Русский Скачать по прямой ссылке Таблица П3. Вычисление дисперсии и стандартного отклонения
Оценки Класса А (Среднее = 75) d d2 77-75 2 4 76-75 1 1 75-75 0 0 74-75 -1 1 73-75 -2 4 Сумма d2 = 10 Дисперсия = среднее по d2 = 10 / 5 = 2,0 Стандартное отклонение (σ) = = 1,4 Оценки Класса Б (Среднее = 75) d d2 90-75 15 225 85-75 10 100 75-75 0 0 65-75 -10 100 60-75 -15 225 Сумма d2 = 650 Дисперсия = среднее по d2 = 650 / 5 = 130 Стандартное отклонение (σ) = = 11,4 Неудобство дисперсии состоит в том, что она выражена в единицах измерения, возведенных в квадрат. Поэтому величина дисперсии, равная 2 у класса А, не означает, что его усредненные показатели отличаются от среднего на 2 пункта. Она показывает, что 2 — это результат усреднения возведенных в квадрат значений, на которые показатели отличаются от среднего. Чтобы получить меру отклонения, выраженную в первоначальных единицах измерения (в данном случае это количество единиц, набранных на экзамене), надо просто извлечь из дисперсии квадратный корень. Результат называют стандартным отклонением. Оно обозначается греческой буквой σ (сигма), используемой также в некоторых других статистических вычислениях, которые мы обсудим вкратце. Стандартное отклонение вычисляется по следующей формуле: Пример вычисления стандартного отклонения. (табл. П3). Показатели выборок из двух классов представлены в виде, удобном для вычисления стандартного отклонения. На первом этапе вычитаем среднее из каждого показателя (среднее = 75 в обоих классах). В результате получаем положительные величины d для показателей, которые больше среднего, и отрицательные для тех, которые меньше его. Когда полученные величины будут возведены в квадрат, знак минус пропадет (следующая колонка в табл. П3). Возведенные в квадрат разности складываются и делятся на N — количество элементов выборки, в нашем случае N = 5. Извлекая квадратный корень, получаем стандартное отклонение. [В этом ознакомительном изложении мы везде будем использовать σ (сигма). Однако в научной литературе для обозначения стандартного отклонения выборки используется маленькая буква s, а через а обозначают стандартное отклонение для всей группы. Кроме того, при вычислении стандартного отклонения для выборки (s) сумма всех d2 делится не на N, а на N-1. В случае достаточно больших выборок, однако, использование N-1 вместо N мало влияет на величину стандартного отклонения. Для упрощения объяснений мы не будем различать здесь стандартное отклонение выборки и группы и используем для них одну и ту же формулу. Обсуждение этого момента см. в: Phillips (1992).] Статистические выводы Теперь, познакомившись со статистикой как способом описания данных, мы готовы обратиться к интерпретации данных — тому, как из них делают выводы. Группа и выборки Прежде всего, необходимо различать группу и выборку из этой группы. Бюро переписи Соединенных Штатов пытается описать население в целом путем получения описательного материала по возрасту, семейному положению и т. д. обо всех жителях страны. Слово группа (population) годится для бюро переписи, поскольку оно представляет всех людей, живущих в США. В статистике слово «группа» не ограничено людьми, животными или предметами. Группой могут быть все величины температур, зарегистрированные термометром в течение последнего десятилетия, все слова английского языка или любой другой определенный запас данных. Часто у нас нет доступа ко всей группе, и тогда мы пытаемся представить ее по выборке, взятой в случайном (непредвзятом) порядке. Можно задаться каким-либо вопросом о случайно отобранной части людей, как это сделало Бюро переписи в некоторых недавних переписях; можно вывести среднюю температуру, снимая показания термометра в определенное время и не ведя непрерывной записи; можно оценить количество слов в энциклопедии, подсчитав слова на случайно выбранных страницах. Во всех этих примерах делается выборка из группы. Если какие-либо из этих процессов повторить, результаты будут слегка различны вследствие того, что выборка не полностью отражает группу в целом и, следовательно, содержит ошибки выборки. Именно здесь вступают в игру статистические выводы. Выборку данных из группы собирают, чтобы сделать вывод об этой группе. Можно изучить выборку данных переписи, чтобы узнать, стареет ли население, например, и существует ли тенденция миграции в пригородные зоны. Сходным образом, экспериментальные результаты изучаются, чтобы определить, какое воздействие экспериментальные манипуляции оказали на поведение — повлияла ли громкость на порог восприятия высоты звука, или оказывают ли особенности воспитания существенное влияние на последующую жизнь. Чтобы делать статистические выводы, надо оценить отношения, на которые указывают данные выборки. Такие выводы всегда имеют некоторую степень неопределенности из-за ошибок выборки. Если статистические испытания показывают, что величина эффекта, обнаруженная в данной выборке, достаточно велика (относительно оценки ошибки выборки), то можно быть уверенным, что наблюдаемый в данной выборке эффект существует и у группы в целом. Таким образом, статистический вывод связан с необходимостью сделать вывод или суждение относительно некоторой характеристики группы, основываясь только на информации, полученной о выборке из этой группы. В качестве знакомства со статистическим выводом мы рассмотрим нормальное распределение и его применение при интерпретации стандартного отклонения. Нормальное распределение Когда большое количество данных собирают, представляют в табличном виде и отображают в виде гистограммы или огибающей, они часто образуют колоколообразное симметричное распределение, известное как нормальное распределение. Большинство его элементов располагаются вблизи среднего (верхняя точка колокола), и этот колокол резко спадает у самой большой и у самой малой величины. Такая форма кривой представляет особый интерес, поскольку она возникает и тогда, когда результат процесса основан на множестве случайных событий, все из которых происходят независимо. Демонстрационное устройство, показанное на рис. П4, позволяет увидеть, как из случайных событий складывается нормальное распределение. Случайный фактор — упадет ли стальной шарик влево или вправо каждый раз, когда он попадает в развилку, — приводит к симметричному распределению: больше шариков падают прямо посередине, но время от времени один из них достигает одного из крайних отделений. Это удобная визуализация того, что имеется в виду под случайным распределением, близким к нормальному распределению. Рис. П4. Устройство для демонстрации нормального распределения случайной величины. Устройство держат вверх ногами, пока все стальные шарики не скатятся в резервуар. Затем устройство переворачивают и держат вертикально, пока шарики, пройдя по полю со штырьками, не скатятся в 9 колонок-выемок внизу. Точное количество шариков, попавших в каждую колонку, в разных демонстрациях будет неодинаковым. Однако в среднем высота колонок из шариков будет примерно повторять нормальное распределение, когда самая высокая колонка будет в центре, а высоты остальных колонок будут снижаться в направлении к краям. Нормальное распределение (рис. П5) — это математическое представление идеализованного распределения, приближенно создаваемого устройством, показанным на рис. П4. Нормальное распределение показывает вероятность того, что элементы в группе с нормальным распределением будут отличаться от среднего на любую заданную величину. В процентах на рис. П5 показана доля площади, лежащей под кривой между указанными величинами шкалы; общая площадь под кривой соответствует группе в целом. Примерно две трети всех случаев (68%) попадают в интервал между плюс и минус одним стандартным отклонением от среднего (±1σ); 95% всех случаев — в интервал ±2σ; и практически все случаи (99,7%) — в ±3σ. Рис. П5. Нормальное распределение. Кривую нормального распределения можно построить, используя стандартное отклонение и среднее. Площадью под кривой, лежащей левее -3σ и правее +3σ, можно пренебречь. Более подробный список площадей под частями кривой нормального распределения приведен в табл. П4. Таблица П4. Площадь участков под кривой нормального распределения как часть общей площади под ней Стандартное отклонение (1) Площадь левого участка от данного значения (2) Площадь правого участка от данного значения (3) Площадь участка между данным значением и средней -3,0 σ 0,001 0,999 0,499 -2,5 σ 0,006 0,994 0,497 -2,0 σ 0,023 0,977 0,477 -1,5 σ 0,067 0,933 0,433 -1,0 σ 0,159 0,841 0,341 -0,5 σ 0,309 0,691 0,191 0,0 σ 0,500 0,500 0,000 +0,5 σ 0,691 0,309 0,191 +1,0 σ 0,841 0,159 0,341 +1,5 σ 0,933 0,067 0,433 +2,0 σ 0,977 0,023 0,477 +2,5 σ 0,994 0,006 0,494 +3,0 σ 0,999 0,001 0,499 Давайте при помощи табл. П4 проследим, как получаются величины 68% и 95%, показанные на рис. П5. В табл. П4 в третьей колонке находим, что между -1σ и средним лежит 0,341 общей площади и между +1σ и средним тоже 0,341 общей площади. В сумме эти величины дают 0,682, что на рис. П5 показано как 68%. Сходным образом площадь от -2σ до +2σ составит 2 х 0,477 = 0,954, показанные как 95%. Шкалирование данных Чтобы интерпретировать показатель, часто нужно знать, высокий он или низкий по отношению к другим показателям. Если человеку, сдающему водительский экзамен, требуется 0,500 сек, чтобы нажать на тормоз после сигнала опасности, как определить, быстро это или медленно? Считать ли, что студент сдал курс по физике, если его показатель на экзамене равен 60? Для ответа на такие вопросы надо вывести шкалу, с которой эти показатели можно сравнивать. Ранжирование данных. Располагая показатели по рангу от высокого к низкому, мы получаем одну из таких шкал. Отдельный показатель интерпретируется по тому, на каком месте он располагается среди группы показателей. Например, курсанты военной академии Вест Пойнт знают, где они находятся в своем классе — возможно, 35-ми или 125-ми в классе из 400. Стандартный показатель. Стандартное отклонение — удобная единица шкалирования, поскольку мы можем оценить, насколько далеко от среднего располагаются 1σ или 2σ (табл. П4). Величину произведения, в котором один сомножитель — стандартное отклонение, называют стандартным показателем. Многие шкалы, применяемые в психологических измерениях, основаны на принципе стандартного показателя. Пример вычисления стандартного показателя. В табл. П1 приведены показатели, полученные 15 студентами на вступительных экзаменах. Не имея дополнительной информации, мы не знаем, являются ли эти показатели репрезентативными для группы всех поступавших. Однако предположим, что средний показатель на этих экзаменах был 75, а стандартное отклонение 10. Каким же будет стандартный показатель у студента, набравшего на экзаменах 90 баллов? Насколько выше среднего лежит этот показатель, надо выразить в количестве стандартных отклонений: Стандартный показатель для студента, с оценкой 90 равен: В качестве второго примера возьмем учащегося с оценкой 53. Стандартный показатель для оценки 53 равен: В этом случае показатель учащегося лежит ниже среднего на 2,2 стандартных отклонения. Таким образом, знак стандартного показателя (+ или -) говорит о том, выше или ниже среднего находится данный показатель, а его величина показывает, насколько далеко от среднего он расположен в единицах стандартных отклонений. Связаться с администратором Похожие публикации: Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|