Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/init.php on line 69 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/init.php on line 69 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/engine.php on line 543 Warning: strtotime(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/show.full.php on line 169 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/show.full.php on line 434 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/show.full.php on line 434 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/show.full.php on line 438 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/show.full.php on line 438 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/functions.php on line 89
|
Анастази А. Дифференциальная психология.Категория: Библиотека » Психодиагностика | Просмотров: 30183
Автор: Анастази А.
Название: Дифференциальная психология. Формат: HTML, DOC Язык: Русский Скачать по прямой ссылке Распределение индивидуальных различий 53
деление психологического качества бессмысленно по крайней мере сейчас. В процессе создания теста нормальный график рассматривается скорее как методологическая проблема, чем как эмпирически наблюдаемый факт. Всякий раз, когда стандартизированная группа показывает распределение, которое нельзя признать нормальным, обычной реакцией должно быть изменение теста. Большинство тестов, таким образом, видоизменялись до тех пор, пока они не давали в популяции, для которой предназначались, распределения, приближенного к нормальному. Некоторые пункты шкалы удалялись или добавлялись, другие перемещались по шкале вверх или вниз; при этом исследователь каждый раз оценивал, к чему приводят подобные изменения, и, в конце концов, добивался желаемой приближенности распределения к нормальному виду. Поэтому, говоря, что данное распределение нормальное, мы подразумеваем, что был проведен процесс дотошной стандартизации данного теста. И наоборот, говоря, что данное распределение не соответствует норме, мы подразумеваем только то, что тест получился неудачным или что тест применялся к группе, для которой он был не пригоден. Есть несколько причин, по которым разработчики тестов и исследователи в области дифференциальной психологии обычно стремятся получить нормальное распределение. Если делать допущения относительно распределения какого-либо человеческого качества, нормальный график в большинстве ситуаций является наиболее вероятным. Известная сложность и множественность факторов, определяющих то, как данное качество проявляется у индивида, заставляет нас ожидать, что оно будет распределяться в соответствии с теорией вероятности. Более того, распределение физических качеств, измеряемых равными единицами измерения, такими как дюймы или фунты, дает графики нормального распределения. Другой причиной стремления к поиску соответствия с нормальным распределением является та, что нормально распределенные данные позволяют подвергать их различным типам статистического анализа, который в противном случае оказывается неприменимым. Однако следует иметь в виду, что другие типы распределения могут быть предпочтительны для некоторых специальных целей и соответствующим образом использоваться. 54 Дифференциальная психология Специальные факторы. Отклонения от нормального графика могут быть в большей степени результатом воздействия определенных условий на сами исследуемые характеристики, чем следствием непродуманной выборки или применения негодных средств. Примером может служить так называемая гипотеза J-кривой социальной конформности, впервые предложенная Оллпор-том (1). Эта кривая, названная из-за своего сходства с буквой J, может рассматриваться как сильно скошенный график, в котором при распределении большинство показателей приходится на один его конец, представляющий собой полную или почти полную конформность к социально принятому стандарту поведения. Лучшей иллюстрацией такой J-кривой являются графики реакции автомобилистов или пешеходов на регулирование дорожного движения: на остановку транспортных потоков, пересечение перекрестков или движение по транспортной полосе. Другие примеры «конформистского поведения», к которому была бы применима J-кривая, включают определенные религиозные обычаи, такие как время прихода на службу, участие в групповом пении и т. п. Типичные J-кривые изображены на рисунках 18 и 19. На рисунке 18 показано распределение реакций 102 автомобилистов на перекрестке без поперечно идущего транспорта, но с красным сигналом светофора и регулировщиком. Надо отметить, что в 90 % наблюдавшихся случаев автомобилисты полностью останавливались. В пределах оставшихся 10 % некоторые существенно снижали скорость, некоторые ехали чуть медленнее и очень мало было тех, кто продолжал ехать с той же скоростью. Можно было бы предположить, что если бы все зависело А — остановка; В — очень медленно; С — чуть медленнее; D — с той же скоростью Рис. 18. J-кривая поведения автомобилистов на перекрестке при отсутствии поперечно идущего транспорта, но с красным сигналом светофора и регулировщиком. (Данные из Оллпорта, 1, с. 144.) Распределение индивидуальных различии 55 только от их собственного выбора, автомобилисты могли бы продемонстрировать поведение, которое более или менее совпало бы с нормальным распределением. Но введение таких факторов «социального давления», как регулирование транспорта с помощью светофора и полисмена, повлияло на изменение распределения, придав ему вид J-кривой. Необходимо отметить, что местоположение пика зависит от того пункта на шкале, на который падает социально обусловленное поведение. Крайние значения реальной J-кривой проявляются не во всех ситуациях социального конформизма. Так степень, до которой напиваются городские взрослые американцы, возможно, предстанет на графике в виде пика, но это не будет действительно крайняя точка, а всего лишь средняя, соответствующая «умеренному социальному уровню». Эта точка, возможно, проявляет максимальный конформизм для групповой практики, но она не отражает ни максимума, ни минимума в питейном поведении. Важна не сама по себе J-кривая, но, скорее, тот факт, что изменения в графике распределения могут быть инспирированы социальным конформизмом. J-кривая — это всего лишь конкретный пример, вызванный этим фактором. Мимоходом добавим, что кривая на рисунке 18 на самом деле представляет собой обращенную в другую сторону J, которую точнее можно назвать L-кривой. Но по договоренности все подобные очень сильно скошенные кривые принято называть J-кривыми, безотносительно к тому, является ли пик левым или правым крайним значением. Конечно, положение шкалы может быть произвольно изменено так, чтобы пик находился слева или справа. Несколько иное применение понятия J-кривой дается в недавно проведенном исследовании юношеского поведения в отношении ровесников (20). В этом исследовании 629 студентам-первокурсникам дали списки с именами их одногруппников (в группе в среднем 35,5 человек) и попросили проставить напротив имен номера от 1 до 5, соответствующие следующим утверждениям: «Хотелось бы, чтобы он был моим лучшим другом», «Хороший друг», «Не дружеские, но нормальные отношения», «Не знаком с ним» и «Чужой человек в группе». Для построения таблицы исследователь соединил первые два рейтинга в категорию «принятие», последние два — в категорию «изоляция и не- 56 Рис. 19. J-кривая, показывающая принятие сверстников юношами и девушками. (Данные из Пепински, 20, с. 536.) приятие», а центральный — выделил в качестве категории «пассивного принятия, или терпимости». Результаты распределения изображены на рисунке 19. Два графика в части А показывают рейтинги, данные юношами другим юношам и девушкам в своих группах. Соответствующие графики рейтингов, данные девушками, показаны в части В. Согласно мнению исследователя, эти графики показывают конформизм, присущий в нашей культуре большинству юношей и девушек в возрасте полового созревания или немного моложе. Как следствие, они отражают широкое принятие испытуемыми тех, кто относится к одному с ними полу и возрасту в сочетании с тенденцией избегать представителей противоположного пола — эта тенденция сильнее в юношах, чем в девушках. Здесь необходимо предостеречь: мы не должны делать вывод о причинах проблемного поведения на основании формы графика. Как отмечалось в предыдущих разделах, на форму графика могут влиять свойства шкалы измерения. Например, выделив центр шкалы, мы можем из нормально распределенной переменной получить J-кривую. Подобно любому другому частот- Распределение индивидуальных различий 57 ному распределению J-кривую можно исследовать с точки зрения адекватности измерительной шкалы, процедур выборки и других условий, которые могут повлиять на форму распределения. Другим фактором, который может давать частотное распределение в форме J-кривой, является разреженность рассматриваемого феномена. Когда всеобщая частота события в изучаемой выборке является низкой, его ожидаемое вероятностное распределение имеет скошенную форму, известную статистикам как распределение Пуссона. Чем реже проявляется феномен, тем более скошенным будет график этого распределения. Одной из лучших иллюстраций этого типа распределения в психологии является частота аварий (3, 18). Например, если у 200 человек за определенный период времени произошло 100 аварий, ожидаемое вероятностное распределение будет следующим: у 121 человека не должно произойти аварий; у 61 должна произойти 1; у 15 должно произойти 2; и у 3 должно произойти по 3 аварии (ср. 3, ее. 456—457). Этот тип распределения представлен на рисунке 20 графиком А, который показывает действительное число аварий, происшедших у 59 водителей в течение одного месяца. Можно сказать, что здесь мы имеем дело с J-кривой, пик которой совпада- Связаться с администратором Похожие публикации: Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|