|
ОПРЕДЕЛЕНИЕ,дефиниция (лат. definitio), логич. приём, позволяющий: 1) формулировать критерии отличения изучаемого объекта от др. объектов (т. е. производить спецификацию объекта), а также специфич. способы его построения, употребления; 2) формировать значение вновь вводимого знакового выражения или уточнять значение имеющегося выражения в к.-л. языке (естественном, языке идеографич. символизма, формализов. языках логики). Т. к. результаты изучения объектов отображаются в понятиях, О. иногда рассматривается как формулирование в явной и сжатой форме осн. содержания понятий. В отличие от др. логич. средств (напр., правил вывода) О. формулируются в процессе науч. исследования в явной форме и составляют важнейшую часть науч. теорий, их фрагментов, более или менее законченных рассуждений. Все О. подразделяются на явные и неявные. Явными называются О., имеющие структуру Dfd= Dfn, где Dfd - то, что определяется, Dfn - то, посредством чего определяется Dfd; а = - знак дефинициального равенства (нек-рый способ отождествления Dfd и Dfn). В явных О. заключено правило введения Dfd (правило замены Dfn на Dfd) и правило удаления Dfd (правило замены Dfd на Dfn). Неявные О. - это аксиоматич. О., к-рые носят круговой характер: в них исходные термины определяются друг через друга и при этом отсутствуют правила введения и удаления для определяемых исходных терминов внутри теории. Все явные определения подразделяются также на номинальные и реальные. Номинальные О. - О., посредством к-рых вводятся в язык новые знаковые выражения и уточняются уже существующие. Реальные О. - О., посредством к-рых специфицируются изучаемые объекты. Наконец, явные О. подразделяются на классификационные (О. через род и видовое отличие) и генетические. В классификационных О. в Dfn указывается область предметов, соответствующая родовому признаку, из состава к-рой выделяется Dfd по специфич. (видовым) для него признакам [напр., О. «параллелограмм есть четырёхугольник (область, соответствующая родовому признаку), у к-рого стороны попарно параллельны (видовое отличие)»]. В генетич. О. указываются специфич. свойства для образования, построения Dfd. В логике различают также синтаксич. и семантич. О. Первые - это явные О., по отношению к к-рым непосредственно применимо правило взаимозаменимости Dfd и Dfn в различных контекстах; вторые - это О., в к-рых Dfd - нек-рое знаковое выражение, a Dfn - обозначаемый им объект (напр., «термин „ пятиугольник" употребляется для обозначения многоугольников с пятью сторонами»); такое семантич. О. может быть переведено в синтаксическое (напр., «пятиугольник есть многоугольник с пятью сторонами»). По отношению к явным аналкгич. О., классич. представителем к-рых являются О. через род и видовое отличие, формулируются след. правила: 1) правило взаимозаменимости Dfd и Dfn в различных контекстах: если имеется истинный контекст К и если в нём встречается Dfd, а также Dfn некоторого О. Dfd ? Dfn, то они могут быть заменены друг на друга; при этом истинный контекст К останется истинным. Для изолированно рассматриваемых реальных О. через род и видовое отличие это правило формулируется как правило соразмерности понятий Dfd и Dfn: понятия Dfd и Dfn должны иметь один и тот же объём. 2) Правило запрета порочного круга: в явном О. запрещается Dfd определять через Dfn, которое в свою очередь определено через Dfd. Так, нельзя истину определить как верное отражение действительности, если до этого верное отражение действительности было определено как такое, к-рое приводит к истине. 3) Правило однозначности: в пределах науч. теорий и их фрагментов каждому Dfn должен соответствовать лишь один единств. Dfd (но не наоборот). Это правило исключает из науки явления омонимии и является средством формирования науч. терминологии. 4) Правило непротиворечивости: О. не должно быть противоречивым; введение новых явных О. в теорию не должно приводить к противоречивости теории.
Категория: Словари и энциклопедии » Философия » Советский философский словарь, 1974 г. Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|