АНАЛИЗ ДИСПЕРСИОННЫЙ (ANOVA)

- статистический метод, предназначенный для исследования причинной связи между переменной зависимой и одной или несколькими независимыми переменными (факторами). По числу независимых переменных, различают однофакторный А.Д., двухфакторный А.Д. и т.д. (не путать с Анализом факторным!) Зависимая переменная может быть только количественной, в то время как независимые переменные  могут быть представлены номинальными, порядковыми или количественными шкалами (последние должны быть дискретными или сгруппироваными в интервалы).

Первоначально А.Д. был разработан для обработки данных, полученных в ходе специально поставленных экспериментов , и считался единственным методом, корректно исследующим причинные связи. Однако в последние годы, вследствие общей либерализации взглядов на природу статистического анализа, он применяется также к данным, собранным в результате выборочных обследований, если численность выделяемых групп не слишком велика.

В основе метода лежит сравнение средних значений зависимой переменной для групп, образованных комбинациями факторов (сами значения факторов не рассматриваются). Это обстоятельство позволяет некоторым авторам рассматривать А.Д. как обобщение t-критерия Стьюдента, предназначенного для сравнения средних значений переменной в двух группах.

В А.Д. все различия в значениях зависимой переменной (y) объясняются двумя причинами: ее "собственной" или "естественной" изменчивостью, а также изменчивостью, вызванной влиянием независимых переменных, которые в данном случае называются факторами ( Дисперсия объясненная). Соответственно сумма квадратов   зависимой переменной SSобщая = (yij - y)2, где j - номер группы, к которой принадлежит объект с номером i, может быть разложена на две составляющие, одна из которых отражает собственную изменчивость y, а вторая - изменчивость, вызванную влиянием факторов:

SSобщая = SSвнутригрупповая SSмежгрупповая .

Модель однофакторного А.Д. предполагает, что среднее значение зависимой переменной y в группе с номером j (yj) зависит, во-первых, от среднего значения y по всей совокупности и, во-вторых, от эффекта j-го значения фактора xj, который обозначается альфаj : yj = y альфаj. Если фактор x не влияет на зависимую переменную y, то все альфаj = 0 и, следовательно, все yj = y, т.е. не отличаются друг от друга. Проверка гипотезы о влиянии фактора на зависимую переменную сводится к проверке нулевой гипотезы о том, что все альфаj равны нулю (H0 : альфаj = 0 для всех значений j), означающей также, что все групповые средние равны друг другу, против альтернативной гипотезы, состоящей в том, что хотя бы для некоторых значений фактора xj эффекты альфаj отличны от нуля (H1 : альфаj не равно 0 хотя бы для некоторых j). Принятие нулевой гипотезы означает признание независимости переменной y от фактора x; ее отклонение (и, соответственно, принятие альтернативной гипотезы) может служить подтверждением исследуемой причинной зависимости.

Результаты однофакторного А.Д. представляются в виде стандартной таблицы, известной как таблица А.Д. ( Таблицу 1 Приложения.)

Если H0 верна, то F-отношение имеет распределение Фишера с dfмгр = k - 1 и dfвнгр = n - k степенями свободы . Нулевая гипотеза должна быть отклонена, если вычисленное значение F превысит критическое значение F1-альфа, где альфа - заданный уровень значимости .

Многофакторный А.Д. концептуально не отличается от однофакторного. В двух- и многофакторных моделях проверяется ряд гипотез о влиянии на зависимую переменную каждого отдельно взятого фактора, а также их всевозможных сочетаний, что математически выражается в гипотезах о равенстве нулю прямых эффектов факторов и эффектов их взаимодействия. Для проверки таких гипотез межгрупповая сумма квадратов (SSмежгрупповая), представляющая вариацию зависимой переменной под общим влиянием всех факторов, делится на более мелкие составляющие, каждая из которых представляет прямой эффект одного из факторов или один из эффектов взаимодействия.

А.Д. не позволяет судить о том, как именно влияют факторы на значение зависимой переменной, т.е. в каких конкретно группах средние достоверно различаются. Для проверки конкретных гипотез о характере таких различий используются метод парных сравнений   и методы множественных сравнений .

О.В. Терещенко

Просмотров: 2631
Категория: Словари и энциклопедии » Социология » Социология: Энциклопедия / Сост. А.А. Грицанов, В.Л. Абушенко, Г.М. Евелькин, Г.Н. Соколова, О.В. Терещенко., 2003 г.




Другие новости по теме:

  • (Грамматически о гласном): обоюдный, т.е. тот, который может быть и долгим и кратким
  • F60.7х Расстройство типа зависимой личности
  • Гипотезы исследования
  • Двухфакторные теории психического развития (конвергенции двух факторов)
  • Значение биологических и социальных факторов в формировании и развитии психических расстройств
  • Множественная регрессия с переменной-модератором
  • ОДНОЙ ПЕРЕМЕННОЙ, ПРИНЦИП
  • ОПРОСНИК «16 ЛИЧНОСТНЫХ ФАКТОРОВ»
  • Операционализация переменной
  • Операционализация переменной
  • ПЕРЕМЕННОЙ, КРИТЕРИЙ
  • Проверка гипотезы
  • Проверка гипотезы
  • Проверка нулевой гипотезы
  • Реципрокный паттерн взаимодействия, при котором событие может одновременно быть следствием предшествующего и причиной последующего события.
  • С ПЕРЕМЕННОЙ СКОРОСТЬЮ, ПОДКРЕПЛЕНИЕ
  • Смешанное влияние факторов
  • ТЕОРИЯ ФАКТОРА
  • ТЕОРИЯ ФАКТОРОВ
  • ТЕОРИЯ ФАКТОРОВ
  • ТИП независимой переменной
  • ФАКТОРА, РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ
  • ФАКТОРОВ ТЕОРИЯ
  • ФАКТОРОВ ТЕОРИЯ
  • ФАКТОРОВ ТЕОРИЯ
  • ФАКТОРОВ ТЕОРИЯ
  • ШЕСТНАДЦАТИ ЛИЧНОСТНЫХ ФАКТОРОВ, ОПРОСНИК
  • Шестнадцати личностных факторов опросник
  • Шестнадцати личностных факторов опросник
  • теория двух факторов Ч. Спирмена



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       






    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь