КОСВЕННОЕ ДОКАЗАТЕЛЬСТВО

- доказательство, в котором истинность тезиса устанавливается путем показа ошибочности противоположного ему допущения.

При прямом доказательстве задача состоит в том, чтобы найти убедительные аргументы, из которых логически вытекает тезис. В К. д. рассуждение идет как бы окольным путем. Прямые аргументы для выведения из них доказываемого положения не отыскиваются. Вместо этого формулируется антитезис, отрицание этого положения, и тем или иным способом показывается его несостоятельность.

Поскольку К. д. использует отрицание доказываемого положения, оно называется также доказательством от противного. Напр., врач, убеждая пациента, что тот не болен малярией, может рассуждать так: "Если бы действительно была малярия, имелся бы ряд характерных для нее симптомов, в частности общая слабость и озноб. Однако таких симптомов нет. Значит, нет и малярии".

К. д. проходит, таким образом, следующие этапы: выдвигается антитезис и из него выводятся следствия с намерением найти среди них ложное; устанавливается, что в числе следствий действительно есть ложное; делается вывод, что антитезис неверен; из ложности антитезиса делается заключение, что тезис является истинным.

В зависимости от того, как устанавливается ложность антитезиса, можно выделить несколько вариантов К. д. Иногда ложность антитезиса удается установить простым сопоставлением вытекающих из него следствий с фактами, эмпирическими данными. Так, в приведенном примере рассуждение идет по схеме: если неверно первое, то второе; но второе неверно, значит, верно первое.

Нередко анализ самой логической структуры следствий антитезиса позволяет сделать вывод, что он ошибочен. Так, если в числе следствий встретились и утверждение, и отрицание одного и того же, можно сразу заключить, что антитезис неверен. Ложным будет он и в том случае, если из него выводится внутренне противоречивое высказывание о тождестве утверждения и отрицания.

Напр., для доказательства тезиса "Квадрат - это ромб с прямыми углами" выдвигается антитезис: "Неверно, что квадрат есть ромб с прямыми углами". Из последнего выводится как то, что у квадрата все углы прямые (т. к. быть квадратом значит иметь четыре прямых угла), так и то, что у квадрата углы не являются прямыми. Раз из антитезиса вытекает и утверждение, и отрицание одного и того же, значит, он неверен, а правильным является противоположное утверждение - тезис.

Рассуждение здесь идет в соответствии с законом косвенного доказательства: если из отрицания высказывания вытекает логическое противоречие,  само высказывание истинно.

Существует разновидность К. д., когда прямо не приходится искать ложных следствий антитезиса. Согласно закону Клавия, если из отрицания высказывания вытекает это высказывание, оно является истинным. Напр., из отрицательного высказывания "Ни одно суждение не является отрицательным" вытекает: "Некоторые суждения являются отрицательными"; значит, истинно это утвердительное высказывание, а не исходное отрицательное.

К. д. - эффективное средство обоснования выдвигаемых положений. Однако его специфика в определенной мере ограничивает сферу применения. Эта специфика состоит в том, что из антитезиса, являющегося ложным, выводятся следствия до тех пор, пока не будет получено ложное утверждение или логическое противоречие. Имея дело с К. д., приходится все время сосредоточиваться не на верном положении, справедливость которого необходимо обосновать, а на ошибочных утверждениях. Более серьезные возражения против К.д. связаны с использованием в нем закона (снятия) двойного отрицания. Этот закон не признается универсальным, неограниченно приложимым интуиционистской логикой.

Просмотров: 902
Категория: Словари и энциклопедии » Философия » А. Ивин, А. Никифорович. Словарь по логике, 1998 г.




Другие новости по теме:

  • «ЧТО ДЕЛАТЬ?
  • «ЧТО ТАКОЕ ,,ДРУЗЬЯ НАРОДА И КАК ОНИ ВОЮЮТ ПРОТИВ СОЦИАЛ-ДЕМОКРАТОВ?
  • «ЧТО ТАКОЕ ФИЛОСОФИЯ?»
  • ВЫСКАЗЫВАНИЕ, АКТ ВЫСКАЗЫВАНИЯ
  • ДВОЙНОГО ОТРИЦАНИЯ ЗАКОН
  • Делать вид, что не понимаешь
  • ЗАКОН ДВОЙНОГО ОТРИЦАНИЯ
  • Закон отрицания отрицания
  • Закон отрицания отрицания (закон диалектического синтеза)
  • Знание “что”
  • ЗНАНИЕ ЧТО
  • ЛОЖНОЕ УТВЕРЖДЕНИЕ
  • Мудролюбие, что и любомудрие
  • НЕ ВЫТЕКАЕТ, НЕ СЛЕДУЕТ
  • НОРМАТИВНОЕ ВЫСКАЗЫВАНИЕ, или: Деонтическое высказывание
  • Отрицание отрицания
  • ОТРИЦАНИЕ ОТРИЦАНИЯ
  • Отрицание отрицания
  • ОТРИЦАНИЕ ОТРИЦАНИЯ ЗАКОН
  • ОТРИЦАНИЯ ОТРИЦАНИЯ ЗАКОН,
  • ПОСЛЕ ЭТОГО ЗНАЧИТ ПО ПРИЧИНЕ ЭТОГО
  • ПРОЦЕДУРА ВЫРАБОТКИ У КЛИЕНТА УВЕРЕННОСТИ В ТОМ, ЧТО ЕГО ПРОБЛЕМА БУДЕТ УСПЕШНО РЕШЕНА
  • Способность системы достичь одного и того же конечного состояния при различных условиях.
  • ТЕЗИС И АНТИТЕЗИС
  • То, что неподвластно забвению, правда, истина, верность, искренность, правдивость, истинность
  • Упирать на что-л
  • Фрейм -«как если бы»
  • Что такое русская идея?
  • ЧТО ТАКОЕ ФИЛОСОФИЯ?
  • Я знаю, что ничего не знаю



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       






    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь