ИНТЕРПРЕТАЦИЯ

(от лат. interpretatio - разъяснение, истолкование)

- в логике приписывание некоторого содержательного смысла, значения символам и формулам формальной системы; в результате формальная система превращается в язык, описывающий ту или иную предметную область. Сама эта предметная область  и значения, приписываемые символам и формулам, также

наз. И.

Рассмотрим обычное построение исчисления высказываний.

Сначала задается список исходных с и м в о л о в: А, В, С, ...; ~, &, ,(,), (. Затем устанавливаются правила построения формул:

1. Отдельная буква из числа А, В, С,... есть формула.

2. Если х есть формула, то ~ х тоже формула.

3. Если х и у - формулы, то х&у, xvу, х->у тоже будут формулами.

К этому добавляются правила, позволяющие из одних формул получать другие. В частности, некоторые формулы, построенные в соответствии с правилами построения, можно принять в качестве аксиом, добавить к ним правило подстановки, разрешающее на место одной правильно построенной формулы подставлять другую правильно построенную формулу, и правило отделения:  из формул х -> у и х можно получить формулу у.

Такое синтаксическое построение формальной системы представляет собой просто игру с символами, когда мы комбинируем символы в соответствии с правилами, соединяем их, разъединяем, из одних получаем другие и т. п. Для того чтобы система приобрела смысл, стала языком, описанием каких-то объектов, связей и отношений между объектами, нужно придать ей И. Это делается следующим образом.

Сначала приписывается значение исходным символам. Будем считать, что символы А, В, С, ... представляют предложения, которые могут быть истинными или ложными. Истинность или ложность сложных формул устанавливается следующим образом:

Если формула х истинна, то формула ~ х ложна, если формула х ложна, то формула ~ х истинна.

Формула х&у истинна только в том случае, если х истинна и у истинна; во всех остальных случаях формула х & у ложна.

Формула xvy ложна только в том случае, если х ложна и у ложна; во всех остальных случаях формула х v у истинна.

Формула х -> у ложна только в том случае, если х истинна, а у ложна; во всех остальных случаях формула х -> у истинна.

После И. формул синтаксической системы она становится системой предложений, обозначающих истину или ложь, а правила преобразования одних формул в другие превращаются в правила вывода одних предложений из других. Подставляя в формулы конкретные истинные или ложные предложения, мы можем устанавливать между ними разнообразные логические отношения. Можно придать исходным символам и другую И., напр. считать, что А, В, С, ... обозначают события, а символ "(" выражает причинную связь событий. Тогда выражение "А(В" приобретает такой смысл: событие A причинно влечет событие В.

Если в формальной системе имеются знаки для индивидуальных переменных, скажем, х, у, z, ...;, для предикатных выражений -Р, Q, ...; для кванторов -д, $, то мы можем образовать формулы вида,хР(х) и $хР(х). Для И. таких формул вводят некоторую область объектов, по которым пробегают индивидные переменные, и свойства этих объектов, которые обозначаются предикатными выражениями. Тогда предложение видаДхР(х) считается истинным, если все объекты данной области обладают свойством Р. Предложение вида$хР(х) истинно, если хотя бы один объект из нашей объектной области обладает свойством Р.

В отличие от формальных логических систем, в содержательных естественнонаучных и математических теориях всегда подразумевается некоторая И.: в таких теориях используются лишь осмысленные выражения, т. е. смысл каждого выражения предполагается заранее известным. В общем случае понятия и предложения естественнонаучных теорий интерпретируются посредством образов сознания, идеальных объектов, совокупность которых должна быть адекватна интерпретируемой теории относительно описываемых свойств объектов. И. теоретических построений развитых областей научного знания носит, как правило, опосредованный характер и включает в себя многоступенчатые, иерархические системы промежуточных И. Связь начального и конечного звеньев таких иерархий обеспечивается тем, что И. интерпретаций к.-л. теории дает и непосредственную ее И. В математике интерпретируемость различных систем аксиом с помощью других аксиоматических теорий служит традиционным средством установления их относительной непротиворечивости (начиная с доказательства непротиворечивости неевклидовой геометрии Лобачевского посредством ее И. в терминах обычной геометрии Евклида).

В повседневном языке И. называют истолкование, раскрытие смысла того или иного положения, текста, художественного произведения. Однако в процессе И. текста или музыкального произведения интерпретатор - литературовед, режиссер, исполнитель всегда вносит в интерпретируемый материал некоторый личностный смысл, истолковывает его по-своему. Это служит основой множественности И. в искусстве и литературе.

Просмотров: 1294
Категория: Словари и энциклопедии » Философия » А. Ивин, А. Никифорович. Словарь по логике, 1998 г.




Другие новости по теме:

  • АЛКОГОЛИЗМА ДИАГНОСТИЧЕСКАЯ ФОРМУЛА
  • Направленное интервью «Формула профессии»
  • Общая формула предсказаний
  • Основная формула предсказаний
  • ПОЛИТИЧЕСКАЯ(ИЕ) ФОРМУЛА(Ы)
  • ПРЕДМЕТНАЯ ОБЛАСТЬ, или область объектов теории,универсум рассуждения
  • РАТСА ФОРМУЛА
  • СЕКСУАЛЬНАЯ ФОРМУЛА
  • СЛУХОВ, ФОРМУЛА ИНТЕНСИВНОСТИ
  • СПИРМЕНА-БРАУНА, ФОРМУЛА
  • Сексуальная формула
  • ФЛЕША, ИНДЕКС (или ФОРМУЛА)
  • ФОРМУЛА
  • ФОРМУЛА ВНУШЕНИЯ
  • ФОРМУЛА И (FORMULA G)
  • ФОРМУЛА ИГРЫ (GAME FORMULA)
  • ФОРМУЛА ОБОДРЕНИЯ
  • ФОРМУЛА ПРОФЕССИИ
  • Формула
  • Формула "идеального" веса
  • Формула Игнатьева
  • Формула Флеша
  • Формула Хольцингера
  • Формула Эрлангера
  • Формула изобретения
  • Формула открытия
  • Фрейм -«как если бы»
  • Эндокринная формула
  • формула Видмарка
  • формула Джеллинека



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       






    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь