Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/init.php on line 69 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/init.php on line 69 Warning: strtotime(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/nes/nes_news.php on line 48 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/nes/nes_news.php on line 49 Warning: strtotime(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/nes/nes_news.php on line 51 Warning: date(): Invalid date.timezone value 'Europe/Kyiv', we selected the timezone 'UTC' for now. in /var/www/h77455/data/www/psyoffice.ru/engine/modules/news/nes/nes_news.php on line 52
|
psyoffice.ru » Словари и энциклопедии » Философия » А. Ивин, А. Никифорович. Словарь по логике, 1998 г.
ИНДУКЦИЯ МАТЕМАТИЧЕСКАЯ, ПОЛНАЯ МАТЕМАТИЧЕСКАЯ ИНДУКЦИЯ
- средство доказательства общих положений в математике и др. дедуктивных науках. Этот прием опирается на использование двух суждений. Первое представляет собой единичное суждение и наз. базой индукции. В нем доказывается, что 1 обладает некоторым свойством (S(1)). Второе суждение - общее условное. В нем утверждается, что если произвольное число п обладает свойством S (т. наз. индуктивное предположение), то и непосредственно следующее за ним (в натуральном ряду) число n 1 также обладает этим свойством S (т. наз. индукционный шаг). Это т.наз. наследуемость свойства S в натуральном ряду чисел 1, 2, 3, 4, 5, ..., n, n 1 ... Если первое и второе положения верны, то можно сделать заключение, что и все натуральные числа обладают свойством S, что S принадлежит всему бесконечному множеству натуральных чисел. Символически это доказательство записывается так: S(1)& n(S(n)->S(n 1)) (( mS(m). Доказательство некоторого общего математического суждения может быть продемонстрировано последовательностью процедур: из Д n(S(n) ->S(n 1)) по правилам логики могут быть получены следующие суждения: S(1)->S(2) (1), S(2)->S(3) (2), S(3)->S(4) (3)... и т. д. Поскольку же нам надо 5(1), то из суждения (1) мы получаем по модус поненс S(2); поскольку нам дано S(2), мы из (2) можем получить 5( 3); поскольку нам дано S(3), мы из (3) можем получить 5(4), и т. д. до бесконечности. Это и означает доказанность истинности общего суждения (mS(m).
Категория: Словари и энциклопедии » Философия » А. Ивин, А. Никифорович. Словарь по логике, 1998 г. Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|