|
ВЕРОЯТНОСТНАЯ ЛОГИКА— логическая система, в которой высказываниям соответствует непрерывная шкала значений истинности от 0 до 1, причем нуль приписывается высказыванию о невозможном событии, a 1 — практически достоверному. В.л. формально можно рассматривать как разновидность многозначной логики, которая оперирует дискретными значениями истинности, а В.л. — непрерывным множеством значений в интервале от 0 до 1. Поскольку появлению случайного события из статистического коллектива можно приписать некоторую вероятность, то такую же вероятность можно соотнести с высказыванием, характеризующим это событие, а тем самым установить соответствие между событиями и высказываниями о них. В.л. опирается, однако, на логическую интерпретацию вероятности, в которой последняя рассматривается как отношение между посылками и заключением индукции. Первые системы В.л. возникли именно в рамках логической интерпретации, нередко логическую вероятность называют также индуктивной вероятностью. Системы В.л. могут строиться с помощью аксиоматического метода, когда аксиомами описываются свойства вероятностных высказываний, а все дальнейшие положения, или теоремы, логически выводятся из аксиом. Первую такую систему в 1921 построил известный англ. экономист Дж.М. Кейнс. Более совершенную аксиоматическую систему В.л. в 1939 создал англ. ученый Г. Джеффрис. В настоящее время существует множество подобных систем. Др. системы В.л. основываются на индуктивной интерпретации вероятности как семантической степени подтверждения заключения или гипотезы посылками или данными. К таким семантическим системам принадлежит система, предложенная в 1950 Р. Карна-пом, а также появившиеся позднее системы его последователей. О Кайберг Г. Вероятность и индуктивная логика. М, 1978; Keynes D.M. Treatise on Probability. London, 1921; Jeffreys G. Theory of Probability. Oxford, 1939; CarnapR. Logical Foundation of Probability. Chicago, 1950. Категория: Словари и энциклопедии » Философия » И. Ивин. Философский словарь. Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|