|
дизъюнкциядизъюнкция (от лат. disjunctio - разобщение, различение) логическая операция - аналог употребления союза "или" в обычном языке, с помощью которой из двух или более исходных суждений строится новое суждение. Так, из суждений "Он - способен" и "Он - прилежен" с помощью операции "или" можно получить новое суждение "Он способен или он прилежен" (1). Из суждений "Он совершил преступление", "Он не совершал преступления" с помощью "или" можно получить новое суждение "Он совершил преступление или он не совершал преступления" (2). Суждение (1) истинно в трех случаях: 1) когда какой-то человек оказывается способным, но не прилежным; 2) когда этот человек оказывается прилежным, но не способным; 3) когда установлено, что этот человек и способен, и прилежен. Оно является ложным, когда оказалось, что этот человек не является ни способным, ни прилежным. Суждения типа (1) в логике называют соединительно-разделительными. Суждение же (2) истинно лишь только в том случае, когда имеет место или только первая ситуация ("Он совершил преступление"), или только вторая ситуация ("Он не совершал преступления"). Суждение (2) не допускает, чтобы имели место обе ситуации. Суждения типа (2) носят название исключающе-разделительных или строго разделительных. В рамках логики высказываний (раздел классической математической логики) различают слабую (нестрогую) Д. и сильную (строгую) Д. Если A и В - высказывания, а знак v - знак нестрогой Д., то высказывание "A U B" называют нестрогой Д. (читается: "A или В"). Если U - знак строгой Д., то высказывание "A U В" называют строгой Д. (читается: "либо А, либо В"). Высказывание "A U В" истинно в том и только в том случае, когда истинно по крайней мере одно из составляющих его высказываний, и ложно, когда оба составляющие его высказывания ложны. Высказывание "A U В" истинно в том случае, когда истинно одно и только одно из составляющих его высказываний, и ложно в остальных случаях. Словарь по логике. — М.: Туманит, изд. центр ВЛАДОС. А.А.Ивин, А.Л.Никифоров. 1997. Синонимы: Антонимы: Категория: Словари и энциклопедии » Философия » Словарь логики Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|