|
определение аксиоматическоеопределение аксиоматическое неявное определение понятия путем указания множества аксиом, в которые оно входит наряду с другими понятиями. Аксиома представляет собой утверждение, принимаемое без доказательства. Совокупность аксиом какой-то теории является одновременно и свернутой формулировкой этой теории, и тем контекстом, который определяет все входящие в нее понятия. Напр., аксиомы геометрии Евклида являются тем ограниченным по своему объекту текстом, в котором встречаются понятия точки, прямой, плоскости и т. д., определяющим значения данных понятий. Аксиомы классической ме-ханики Ньютона задают значения понятий "масса", "сила", "ускорение" и др. Положения "Сила равна массе, умноженной на ускорение", "Сила действия равна силе противодействия" не являются явными определениями. Но они раскрывают, что представляет собой сила, указывая связи этого понятия с другими понятиями механики. О. а. является частным случаем определения контекстуального. Принципиальная особенность О. а. заключается в том, что аксиоматический контекст строго ограничен и фиксирован. Он содержит все, что необходимо для понимания входящих в него понятий. Он ограничен по своей длине, а также по своему составу. В нем есть все необходимое и нет ничего лишнего. О. а. - одна из высших форм научного определения понятий. Не всякая научная теория способна определить свои исходные понятия аксиоматически. Для этого требуется относительно высокий уровень развития знаний об исследуемой области; изучаемые объекты и их отношения должны быть также сравнительно просты. Точку, линию и плоскость Евклиду удалось определить с помощью немногих аксиом еще две с лишним тысячи лет назад. Но попытка охарактеризовать с помощью нескольких утверждений такие сложные, многоуровневые объекты, как общество, история или разум, не может привести к успеху. Аксиоматический метод здесь неуместен, он только огрубил бы и исказил реальную картину. Словарь по логике. — М.: Туманит, изд. центр ВЛАДОС. А.А.Ивин, А.Л.Никифоров. 1997. Категория: Словари и энциклопедии » Философия » Словарь логики Другие новости по теме: --- Код для вставки на сайт или в блог: Код для вставки в форум (BBCode): Прямая ссылка на эту публикацию:
|
|