Индукция Математическая, Полная Математическая Индукция
а- средство доказательства общих положений в матемантике и др. дедуктивных науках. Этот прием опирается на использованние двух суждений. Первое представляет собой единичное суждение и наз. базой индукции. В нем доказывается, что 1 обладает некоторым свойством (S(1)). Второе суждение - общее условное. В нем утвержндается, что если произвольное число п обладает свойством S (т. наз. индуктивное предположение), то и непосредственно следующее за ним (в натуральном ряду) число n+1 также обладает этим свойством S (т. наз. индукционный шаг). Это т.наз. наследуемость свойства S в натуральном ряду чисел 1, 2, 3, 4, 5, ..., n, n+1 ... Если первое и второе положения верны, то можно сделать заключение, что и все натуральные числа обладают свойством S, что S принадлежит всенму бесконечному множеству натуральных чисел. Символически это доказательство записывается так: S(1)& "n(S(n)->S(n+1)) о" mS(m). Доказательство некоторого общего математического суждения может быть продемонстрировано последовательностью процедур: из " n(S(n) ->S(n+1)) по правилам логики могут быть получе- ны следующие суждения: S(1)->S(2) (1), S(2)->S(3) (2), S(3)->S(4) (3)... и т. д. Поскольку же нам надо 5(1), то из сужденния (1) мы получаем по модус поненс S(2); поскольку нам дано S(2), мы из (2) можем получить 5( 3); поскольку нам дано S(3), мы из (3) можем получить 5(4), и т. д. до бесконечности. Это и означает доказанность истинности общего суждения "mS(m).
Словарь по логике. — М.: Туманит, изд. центр ВЛАДОС.
А.А.Ивин, А.Л.Никифоров.
1997.
Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:
Код для вставки на сайт или в блог:
Код для вставки в форум (BBCode):
Прямая ссылка на эту публикацию:
Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц. Если это не так - свяжитесь с администрацией сайта. Материал будет немедленно удален. Электронная версия этой публикации предоставляется только в ознакомительных целях. Для дальнейшего её использования Вам необходимо будет приобрести бумажный (электронный, аудио) вариант у правообладателей.
На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.