Александров Ю.И. Основы психофизиологии: Учебник.

Категория: Библиотека » Общая психология | Просмотров: 48152

Автор:   
Название:   
Формат:   HTML, DOC
Язык:   Русский

Скачать по прямой ссылке

Таким образом, вовлечение нейронов разных областей мозга в системные процессы происходит синхронно. Эти процессы – общемозговые и не могут быть локализованы в какой-либо области мозга. В различных областях мозга в поведении протекают не локальные афферентные или эфферентные, а одни и те же общемозговые системные процессы организации активности нейронов в систему, которая является не сенсорной или моторной, а функциональной. Активность нейронов этих областей отражает не обработку сенсорной информации или процессы регуляции движений, а вовлечение нейронов в определенные фазы организации (афферентный синтез и принятие решения) и реализации системы. Активность любой структуры одновременно соответствует как определенным свойствам среды, так и характеру двигательной активности.
Единый паттерн активации и синхронность вовлечения нейронов разных областей мозга в общемозговые системные процессы не означают эквипотенциальности (равнозначности) мозговых структур; вклад этих структур в обеспечение поведения зависит от специфики проекции на них индивидуального опыта (см. параграф 8).
2.8. Поведение как континуум результатов
До сих пор мы с дидактическими целями, а также следуя традиции исходного варианта ТФС, использовали понятие пускового стимула. Однако ясно, что использование этого понятия в рамках парадигмы активности ведет к эклектике. Кажущаяся его необходимость отпадает при рассмотрении поведенческого акта не изолированно, а как компонента поведенческого континуума (последовательности поведенческих актов, совершаемых индивидом на протяжении своей жизни). При этом оказывается, что следующий акт в континууме реализуется после достижения и оценки результата предыдущего акта. Эта оценка – необходимая часть процессов организации следующего акта, которые, таким образом, могут быть рассмотрены как трансформационные, или процессы перехода от одного акта к другому. Места для стимула в континууме нет (см. рис. 14.1). С теми изменениями среды, которые традиционно рассматриваются как стимул для данного акта, на самом деле информационно связано предыдущее поведение, в рамках которого эти изменения ожидались и предвиделись в составе модели будущего результата – цели.
А что же с неожиданными изменениями? К каким модификациям на уровне последовательности поведенческих актов может привести изменение среды, которое не предвиделось в рамках предшествующего ему поведения и, следовательно, не является результатом последнего? Оно либо не изменит запланированной последовательности актов континуума (и в этом смысле «проигнорируется»), либо прервет ее, обусловив формирование разных, в зависимости от конкретной ситуации, видов поведения: повтор прерванного акта, формирование нового поведения, в том числе ориентировочно-исследовательского (см. гл. 10), и т.д. И опять все это поведение будет направлено в будущее, и его организация явится информационным эквивалентом будущего события.
Таким образом, поведение может быть охарактеризовано как континуум результатов [Анохин, 1978], а поведенческий акт рассмотрен как отрезок поведенческого континуума от одного результата до другого [Швырков, 1978].
3. СИСТЕМНАЯ ДЕТЕРМИНАЦИЯ АКТИВНОСТИ НЕЙРОНА
3.1. Парадигма реактивности: нейрон, как и индивид, отвечает на стимул
Как мы уже отмечали, с позиций парадигмы реактивности поведение индивида представляет собой реакцию на стимул. В основе реакции лежит проведение возбуждения по рефлекторной дуге: от рецепторов через центральные структуры к исполнительным органам. Нейрон при этом оказывается элементом, входящим в рефлекторную дугу, а его функция – обеспечением проведения возбуждения. Тогда совершенно логично рассмотреть детерминацию активности этого элемента следующим образом: «...ответ на стимул, подействовавший на некоторую часть ее (нервной клетки. – Ю.А.) поверхности, может распространяться дальше по клетке и действовать как стимул на другие нервные клетки...» [Бринк, 1960, с.93]. Следовательно, в рамках парадигмы реактивности рассмотрение нейрона вполне методологически последовательно: нейрон, как и организм, реагирует на стимулы. В качестве стимула выступает импульсация, которую нейрон получает от других клеток, в качестве реакции – следующая за синаптическим притоком импульсация данного нейрона (рис. 14. 2).
К сожалению, такая методологическая последовательность отсутствовала в рамках парадигмы активности. Как правило, анализ «нейронных механизмов» целенаправленного поведения приводил авторов к тому, что мы назвали ранее «уровневой эклектикой»: представлению о том, что индивид осуществляет целенаправленное поведение, а его отдельный элемент – нейрон – реагирует на приходящее к нему возбуждение – стимул. Важнейшей задачей стало устранение подобной эклектики.
Подход к нейрону как к проводнику возбуждения встречал возражения уже давно, например, со стороны Дж. Э. Когхилла, который, однако, не мог в отсутствие целостной и последовательной теории, вписывающейся в парадигму активности, дать решение, адекватное сформулированной задаче. Его нейрон реагирует «на окружающую среду так же, как живой организм» [Когхилл, 1934, с. 56]. Решающий шаг в направлении решения этой задачи был сделан П.К. Анохиным [1975], который в своей последней работе подверг аргументированной критике общепринятую, как он ее назвал, «проведенческую концепцию» нейрона, и предложил вместо нее системную концепцию интегративной деятельности нейрона.
Вне зависимости от конкретных, усложняющихся с развитием науки представлений о функционировании нейрона, в традиционном рассмотрении центральной оставалась идея об электрической суммации потенциалов на мембране нейрона. В соответствии с ней предполагалось, что возбуждающие и тормозные постсинаптические потенциалы, возникающие на мембране постсинаптического («получающего») нейрона под действием пресинаптической импульсации за счет изменения ионных градиентов, суммируясь, действуют на генераторный пункт нейрона, продуцирующий распространяющиеся потенциалы действия – импульсы.
П. К. Анохин назвал парадоксальным перенос с нервного волокна на нейрон представления о проведении возбуждения как главной деятельности последнего. Если задача состоит лишь в том, чтобы передать возбуждение от одного нейрона к другому, то не ясно, для чего между входным и выходным импульсами «вставлены» сложные промежуточные этапы: выделение медиатора, его воздействие на субсинаптическую мембрану и химические превращения в ней. «Неужели для того, чтобы, начав с электрического потенциала терминали, сформировать в конце концов тот же спайковый потенциал, весьма сходный по своим физическим параметрам с потенциалом, пришедшим по аксонной терминали?» [Анохин, 1975, с. 368].
3.2. Парадигма активности: нейрон, как и индивид, достигает «результат», получая необходимые метаболиты из своей «микросреды»
Упомянутые ранее этапы приобретают смысл в том случае, если принять, что процесс, обеспечивающий переход от прек постсинаптическим образованиям, продолжается в непрерывную цепь химических процессов внутри нейрона и, главное, что все межклеточные контакты служат обмену метаболическими субстратами между контактирующими клеточными образованиями. Переход от «поведенческой концепции» к рассмотрению нейрона как организма, получающего необходимые ему метаболиты из окружающей «микросреды», и был тем шагом, который предопределил последующую разработку проблемы в направлении ее системного решения.

Рис. 14.2. Индивид и нейрон в парадигмах активности и реактивности
Цифрами на схеме обозначена последовательность событий. В соответствии с парадигмой реактивности за стимулом (1) следует реакция (2) – поведенческая у человека, импульсная у нейрона. В последнем случае в качестве стимула рассматривается импульсация нейрона, аксон которого (параллельный стрелке с надписью «Стимул») контактирует с дендритом реагирующего нейрона, окруженного глиальными клетками и соприкасающегося с кровеносным сосудом, который расположен над словом «Реакция». Реакция представляет собой импульсные разряды реагирующего нейрона. В соответствии с парадигмой активности действие (1) (поведенческое – у человека, импульсация – у нейрона) завершается достижением результата и его оценкой (2). Пунктирной линией обозначена модель будущего результата: для человека – контакт с объектом-целью, для нейрона – получение соответствующих метаболитов (М1 – от контактирующего нейрона; M2 – от соседней глиальной клетки), которые соединяются с рецепторами нейрона ( P1 , P2)
Необходимость дальнейшей разработки определялась тем, что в рамках концепции интегративной деятельности нейрона последовательность событий в принципе оставалась той же, что и в парадигме реактивности. В обоих случаях процесс начинался приходом возбуждения к нейрону и заканчивался генерацией этим нейроном потенциала действия. Разница, которую подчеркивал П.К. Анохин, состояла в том, какими процессами заполнялся интервал между действием медиатора на субсинаптическую мембрану нейрона и генерацией потенциала: химическими преобразованиями внутри нейрона в первом случае и электрической суммацией во втором.
Устранение эклектики и приведение представления о детерминации активности нейрона в соответствие с требованиями системной парадигмы было достигнуто отказом от рассмотрения активности нейронов как реакции на синаптический приток и принятием положения о том, что нейрон, как и любая живая клетка, реализует генетическую программу, нуждаясь при этом в метаболитах, поступающих к нему от других клеток [Швырков, 1995]. В связи с этим последовательность событий в деятельности нейрона становится аналогичной той, которая характеризует активный целенаправленный организм, а его импульсация – аналогичной действию индивида (см. рис. 14.2).
Активность нейрона, как и поведение организма, является не реакцией, а средством изменения соотношения со средой, «действием», которое обусловливает устранение несоответствия между «потребностями» и микросредой, в частности за счет изменений кровотока, метаболического притока от глиальных клеток и активности других нейронов. Эти изменения, если они соответствуют текущим метаболическим «потребностям» нейрона, приводят к достижению им «результата» (получение набора метаболитов, соединяющихся с его рецепторами; см. далее) и прекращению его импульсной активности. Предполагается, что несоответствие между «потребностями», определяемыми генетически, и реально поступающими метаболитами может иметь место как при генетически обусловленных изменениях метаболизма клетки, так и при изменении притока метаболитов от других клеток. Таким образом, нейрон – не «кодирующий элемент», «проводник» или «сумматор», а организм в организме, обеспечивающий свои «потребности» за счет метаболитов, поступающих от других элементов.
Следует подчеркнуть, что для последовательно системного понимания детерминации активности нейрона существенны оба компонента: признание направленности активности нейрона в будущее и ее обусловленности метаболическими «потребностями» нейрона. То, что только первого из них недостаточно, видно на примере интересной концепции гедонистического нейрона, разработанной А. Г. Клопфом [Klopf, 1982]. Утверждая, что целенаправленный мозг состоит из целенаправленных нейронов, А.Г. Клопф отвечает на вопрос о том, в чем нейроны нуждаются и как они это получают в соответствии со следующей логикой. Аристотель рассматривал получение удовольствия как главную цель поведения. Следовательно, организм гедонистичен. Нейрон есть организм. Следовательно, нейрон гедонистичен. «Удовольствие» для нейрона – возбуждение, а «неудовольствие» – торможение. Активация нейрона – «действие», обеспечивающее получение им возбуждения. Нейрон является гетеростатом, т.е. системой, направленной на максимизацию «удовольствия», т.е. возбуждения.
Таким образом, отсутствие второго из двух необходимых компонентов ведет к необходимости предположить наличие у нейрона довольно странных и экзотически аргументированных «потребностей», особенно если принять во внимание популярную концепцию «токсического перевозбуждения» (excitotoxic), в рамках которой сильное возбуждение нейронов рассматривается как причина их гибели.
В то же время наиболее часто у авторов отсутствует первый из компонентов, что при анализе нейронного обеспечения поведения ведет к рассмотрению сложных метаболических превращений внутри нейрона, главным образом как фактора, обеспечивающего проведение возбуждения и пластичность (модификацию проведения при разных видах научения). При этом сложнейшие механизмы изменения «белкового фенотипа» оказываются направленными, например на изменение чувствительности постсинаптической мембраны к пресинаптическому возбуждению.
3.3. «Потребности» нейрона и объединение нейронов в систему как способ их обеспечения
Охарактеризуем очень кратко некоторые существенные «потребности» нейрона. Они определяются необходимостью синтеза новых молекул, в том числе белков, расходуемых в процессе жизнедеятельности («типичная» белковая молекула разрушается в среднем через два дня после того, как она была синтезирована [Албертс и др., 1986]) или обеспечивающих структурные перестройки нейрона, которые имели место при научении. Для этого в том случае, если в клетке нет соответствующей информационной РНК, направляющей синтез белка в цитоплазме, экспрессируются (становятся активными, «выраженными») гены, среди которых выделяют гены «домашнего хозяйства» (универсальные «потребности» клеток), гены «роскоши» (специфические «потребности» клетки) или «ранние» и «поздние» гены, экспрессируемые на последовательных стадиях формирования памяти, и т.д. Как предполагается, именно усложнение процессов регуляции экспрессии генов, а не их количество определяет эволюционное усложнение живых систем [Албертс и др., 1986; Анохин,1996].
Различие в экспрессии, а не потеря или приобретение генов, определяют различие специализации клеток организма. Особенно велики эти различия для клеток мозга, в которых экспрессируются десятки тысяч уникальных для мозга генов. Считается, что метаболическая гетерогенность нейронов, обусловленная генетически и зависящая от условий индивидуального развития, т.е. являющаяся результатом взаимодействия филои онтогенетической памяти, лежит в основе разнообразия функциональной специализации нейронов и определяет специфику их участия в обеспечении поведения [Пигарева, 1979; Шерстнев и др., 1987; Александров, 1989; Швырков, 1995].
Роль большинства химических соединений, поступающих в «микросреду» клетки, сводится к изменению свойств и скорости синтеза имевшихся в ней белков или к инициации синтеза новых белков. Гидрофобные молекулы (например, стероидные или тиреоидные гормоны) могут проникать внутрь нейрона и соединяться там с рецепторами. Рецепторы – это, главным образом, белковые структуры, роль которых состоит в «узнавании» соответствующих молекул и обеспечении последующего развертывания тех или иных метаболических процессов. Но как влияют на метаболизм нейрона нейромедиаторы, выделяемые из терминалей контактирующих с ним нейронов и являющиеся гидрофильными молекулами, не проникающими в клетку и сразу разрушающимися после действия на мембрану данного нейрона? Отправной точкой этого действия является соединение медиатора с рецептором постсинаптической мембраны. Соединяясь со «своим» рецептором, медиатор не только изменяет проницаемость ионных каналов, но и оказывает влияние на внутриклеточные процессы, например синтез протеинкиназ – ферментов, фос-форилирующих белки.



Связаться с администратором



Похожие публикации:

  • Любовь Кириллова. О функциях больших полушарий мозга. Левополушарное и правополушарное мышление
  • Редактор. В какую сторону крутится балерина?
  • Знаете ли вы себя?
  • Тест на определение доминирующего полушария
  • Рыжих Татьяна Викторовна Кучеренко Марина Александровна Кутейникова Екатерина Александровна. Мастер-класс для педагогов и родителей «Совершенствование межполушарных связей у детей с ОВЗ»
  • Симонов П. О ДВУХ РАЗНОВИДНОСТЯХ НЕОСОЗНАВАЕМОГО ПСИХИЧЕСКОГО
  • Кортико-висцеральная теория Ивана Петровича Павлова и классическая условно-рефлекторная модель
  • Гемисферэктомия: когда мозг напополам
  • Сергей Зелинский. Современное российское телевидение через призму психологического анализа
  • Геи лучше запоминают лица
  • Синдром дефицита удовлетворенности по К. Блюму (reward deficiency)
  • Кротова Зоя Борисовна. Сегодня мы вас пригласили на мастер-класс по правополушарному рисованию.
  • Королёва Татьяна Евгеньевна. Мастер — класс по нетрадиционной технике рисования
  • Строение головного мозга: важнейшие отделы и их функции
  • Импринтинг (раннее запечатления у животных и человека)
  • Почему с возрастом сложнее подбирать слова?
  • Абрамова Наталья Анатольевна. «Манкатерапия в познавательно-речевом развитии ребёнка дошкольного возраста»
  • Механизм вытеснения в психологических техниках
  • Алекситимия, как модель развития психосоматических заболеваний по П. Сифнеосу
  • Кудрявцева Елена Алексеевна. Формирование ребенка 6-7 лет как личности.
  • Неприятные переживания, которые указывают на то, что Вы развиваетесь в правильном направлении
  • Тест словесных ассоциаций; Word association test; Assoziation-experiment
  • Нейронная основа наших воспоминаний
  • Эффект плацебо действует на биохимическом уровне
  • Игорь Дрозд, Леонид Цыбульский. Структура переживаний и ее место в мышлении человека
  • Чем отличается мозг умного человека?
  • Бубер М. Я И ТЫ
  • За что отвечают гиппокамп и миндалевидное тело. - Функции мозга
  • Деньги и добрые слова действуют на мозг одинаково
  • Нейропсихология: почему мы понимаем других?
  • Султанофф С.М. Легкость против тяжести: использование юмора в кризисных ситуациях
  • Как мозг отличает правду от лжи
  • Венгер А.Л. "Симптоматические" рекомендации в психологическом консультировании детей и подростков
  • Структура психосоматических расстройств по Уильям Глассеру
  • Секрет хорошей памяти в уровне вовлеченности
  • Андреева Г. М. Общение и межличностные отношения.
  • Теория шести рукопожатий уточнена
  • Светлана Салова. Интонационная выразительность речи как средство развития интегративного качества 'Эмоционально-отзывчивый' у детей дошкольниго возраста с общим недоразвитием речи
  • Узнадзе Д.Н. Установка у человека. Проблема объктивации.
  • Кудряшова Анна Александровна. В чем польза образовательной кинезиологии.
  • Ильин Е. П. Эмоции и чувства
  • Последствия отворота
  • Рубан Наталья Валерьевна. «ИНТЕЛЕКТУАЛЬНО-РАЗВИВАЮЩЕЕ ОБУЧЕНИЕ РЕБЁНКА ДОШКОЛЬНОГО ВОЗРАСТА»
  • Тест Роршаха на основе концепции проблемно-решающего поведения.
  • Активность мозга помогает находить преступников
  • Ассоциация
  • Эбич А. В. Применение методик транзактного анализа для дифференцированного назначения биологически активных добавок
  • Аудиоландшафт наших чувств. Значение эмоциональных возгласов
  • Яценко В. И. Интегративная система в психотерапии на основе инициатического анализа и трансактного анализа
  • Арасланова Анна Викторовна. Консультация для родителей «Использование песен в обучении английскому языку»



  • Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:      
    Код для вставки в форум (BBCode):      
    Прямая ссылка на эту публикацию:      


     (голосов: 0)

    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь