антиномия рассела


антиномия рассела
одна из наиболее известных логических антиномий, обнаруженная в начале этого века англ. философом и логиком Б. Расселом (1872-1970). А. Р. связана с понятием множества. Относительно каждого множества представляется осмысленным задать вопрос, является оно своим собственным элементом или нет. Напр., множество всех людей не является человеком, так же как множество стульев - это не стул. Но множество, объединяющее все множества, представляет собой множество и, значит, содержит самое себя в качестве элемента. Назовем множества, не содержащие себя в качестве элемента, обычными,а содержащие себя - необычными и рассмотрим множество, составленное из всех обычных множеств. Поскольку это множество, о нем можно спрашивать, обычное оно или нет. Ответ, однако, оказывается обескураживающим. Если оно обычное, то, согласно своему определению, не должно содержать самое себя в качестве элемента, поскольку содержит все обычные множества. Но это означает, что оно является необычным множеством. Допущение, что рассматриваемое множество представляет собой обычное множество, приводит, таким образом, к противоречию. Значит, оно не может быть обычным. С другой стороны, оно не может быть также необычным: необычное множество содержит самое себя в качестве элемента, а элементами рассматриваемого множества являются только обычные множества. В итоге множество всех множеств, не являющихся собственными элементами, есть свой элемент в том и только том случае, когда оно не является таким элементом. Полученное противоречие говорит о том, что такого множества не существует. Но если столь просто и ясно заданное множество не может существовать, то в чем различие между возможными и невозможными множествами? Наивное, или интуитивное, представление о множестве как сколь угодно обширном соединении в чем-то однородных объектов способно вести, таким образом, к противоречию и нуждается в прояснении и уточнении.
А. Р. не имеет специфически математического характера, ее можно переформулировать в чисто логических терминах. Б.Рассел предложил следующий популярный вариант открытой им антиномии. Представим, что совет какой-то деревни так определил обязанности парикмахера: брить всех мужчин деревни, которые не бреются сами, и только этих мужчин. Должен ли он брить самого себя? Если да, то он будет относиться к тем, кто бреется сам, а тех, кто бреется сам, он не должен брить. Если нет, он будет принадлежать к тем, кто не бреется сам, и, значит, он должен будет брить себя. Таким образом, этот парикмахер бреет себя в том и только том случае, когда он не бреет себя. Это, разумеется, невозможно. Для избежания этой и других антиномий Б. Рассел построил теорию логических типов (см.: Антиномия).
Другим способом устранения А. Р. является отказ от использования "слишком больших множеств". Ни первый, ни второй из этих способов не являются общепризнанными.

Словарь по логике. — М.: Туманит, изд. центр ВЛАДОС. . 1997.


Просмотров: 1092
Категория: Словари и энциклопедии » Философия » Словарь логики





Другие новости по теме:

  • “РАЗУМНЫЕ МЫСЛИ О БОГЕ, МИРЕ И ДУШЕ ЧЕЛОВЕКА, А ТАКЖЕ О ВСЕХ ВЕЩАХ ВООБЩЕ”
  • “ЭТИКА, ИЛИ ПОЗНАЙ САМОГО СЕБЯ”
  • «ПОЗНАЙ САМОГО СЕБЯ»
  • ВЕЧНОЕ ВОЗВРАЩЕНИЕ ТОГО ЖЕ САМОГО, ИЛИ ВСЕХ ВЕЩЕЙ
  • Голова всех голов
  • ДЛЯ-СЕБЯ-БЫТИЕ
  • ЕВРОПЕЙСКАЯ ФИЛОСОФИЯ ведет начало с греков, которые не только овладели с помощью уже существовавшего до них мышления новыми предметами
  • КЛАСС "В СЕБЕ" И КЛАСС "ДЛЯ СЕБЯ"
  • КЛАСС «В СЕБЕ» И КЛАСС «ДЛЯ СЕБЯ»
  • Класс, Множество (В Логике И Математике)
  • МАНИЯ САМОГО СЕБЯ
  • МНОЖЕСТВО
  • ОРИЕНТАЦИЯ ЧЛЕНОВ ГРУППЫ НА ЗАДАЧУ ИЛИ НА СЕБЯ
  • ОТДАВАНИЕ СЕБЯ
  • Отношение Принадлежности Элемента Классу (МноженСтву)
  • ПОЗНАЙ САМОГО СЕБЯ
  • ПРОМИТТОР Планета, к которой может быть определена дирекция сигнификатора, в результате чего образуется аспект между прогрессивным положением сигнификатора и положением при рождении промиттора, обещающий определенные события или условия, соответствую
  • РАЗРЕШИМОЕ И ПЕРЕЧИСЛИМОЕ МНОЖЕСТВА
  • Фрейм как если бы
  • Фрейм как если бы
  • ЧЕЛОВЕК ДЛЯ СЕБЯ. ИССЛЕДОВАНИЕ ПСИХОЛОГИЧЕСКИХ ПРОБЛЕМ ЭТИКИ
  • Что значит быть летучей мышью?
  • Является ли знанием истинное и обоснованное мнение?
  • множество
  • нечеткое множество
  • нормальное множество
  • отношение принадлежности элемента классу (множеству)
  • после этого значит по причине этого
  • сознания школа только
  • школа только сознания



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       






    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь