БРАУЭР


БРАУЭР
    БРАУЭР (Brower) Люйтцен Эгбертус Ян (27 февраля 1881, Оверсхи, Нидерланды -^-2 декабря 1966, Бларикум, Нидерланды) — голландский математик, логик, философ,
    основоположник интуиционизма и один из идейных предшественников и вдохновителей математического конструктивизма. Окончил Амстердамскийуниверситет (1903), там же защитил докторскую диссертацию (1907) и был старшим преподавателем с 1909 по 1951. На философию Брауэра оказали большое влияние восточные философские учения (буддизм и даосизм) и европейская школа интуитивизма. В свою очередь он сам способствовал развитию европейского интуитивизма, показав громадную роль интуиции даже в самых точных науках.
    В 1908 в работе “О недостоверности логических принципов” (De onbetrouwbaarheid der logische principes) Брауэр обосновывал тезис, что классическая логика является результатом неправомерного обобщения на бесконечные совокупности тех законов, которые были получены на небольших конечных множествах. Там же он впервые рассмотрел класс контрпримеров, зависящих от нынешнего состояния человеческого знания, а не от “принципиальных возможностей”. Напр., мы не можем принимать закон ?? ??, поскольку мы для многих точно сформулированных утверждений не знаем их истинности и ложности и даже не имеем мысленного процесса, который с гарантией приводил бы к решению данной проблемы.
    До 1912 Брауэр интенсивно занимался топологией и получил ряд результатов, давших начало современной топологии. Этими работами и своим личным участием Брауэр способствовал становлению российской топологической школы. Затем в течение 15 лет он пытался перестроить классическую математику на основе другой логики и другой интерпретации формул как задач на мысленные построения.
    Брауэр отрицательно отнесся к огульному принятию тезиса Чёрча, считая, что алгоритмическая вычислимость не исчерпывает умственных построений, и в ходе полемики с теми, кто безоговорочно принял данный принцип, выдвинул ряд идей, ставших популярными в современной логике, в частности, идею последовательностей, зависящих от решения проблем (прообраз моделей Крипке) и “беззаконных последовательностей”. Брауэр впервые показал, что математика и соответственно точные науки могут опираться не только на “позитивные” знания, но и на осознанное незнание, обосновав, т. о., альтернативу позитивной методологии науки в рамках точных наук. Он же в статье “Пространство и точки” (Points and Spaces) наметил новый путь решения парадоксов Зенона на базе бесконечной делимости пространства, не состоящего из точек. Личность Брауэра отличалась глубиной, сложностью и противоречивостью. Он субъективно характеризовал работы по классической математике как не имеющие никакого смысла, но объективно оценивал их и поддерживал, будучи редактором ведущего математического журнала. Брауэр не допускал вопросов студентов, но вместе с тем терпимо относился к “различиям во взглядах” внутри интуиционистской школы и внимательно выслушивал критику противников. Он высоко оценивал программу Гильберта и, однако, подчеркивал те ее стороны и следствия, о которых предпочитал умалчивать Гильберт, Когда мировая научная и философская общественность расценила теорему Гёделя как провал программы Гильберта, Брауэр выступил в защиту Гильберта, подчеркнув, что эта теорема никак не касается существа программы и означает лишь неудачу одной из попыток реализовать ее. Брауэр еще до Гёделя подчеркивал неформализуемость любого нетривиального человеческого знания, доводя это до идеи неформализуемости интуиционистской логики, и сам же инициировал работы по ее формализации. Он выдвигал радикальнейшие возражения против классической математики и вместе с тем максимально осторожно подходил к задаче ее перестройки, пытаясь сохранить все, что можно переинтерпретировать на новой основе (это стало ясно сейчас; современники воспринимали любые изменения в привычном математическом мире столь же враждебно, как в свое время неевклидову геометрию). Брауэр отличался глубоким радикальным критическим мышлением и формулировал свои идеи в столь острой форме, что они стимулировали развитие альтернативных концепций. Он отдал дань радикальным политическим увлечениям, поддерживая нацистов вплоть до момента, когда они предательски оккупировали его родину.
    Брауэр подготовил ряд учеников, положивших начало голландской школе в логике и в неклассической математике. Наиболее известны из них А. Геитшнг, давший первую формализацию интуиционистской логики, и Э. Бет, создавший семантические (аналитические) таблицы и первый пример конструкций, названных впоследствии моделями Крипки.
    Соч.: Collected works, ?. 1. Aaist., 1975. Лит.: fiewman H. A., Kreisel G. Luitzen Egbertus Yan Brouwer.— Biographical Memoirs of Fellocos of the Royal Society of London, 15, 1959; Панов M. H. Л. Э. Я. Брауэр и советская математика.—В кн.: Тенденции развития современной математики. М., 1987.
    H. ff. Нтейвода

Новая философская энциклопедия: В 4 тт. М.: Мысль. . 2001.


Просмотров: 605
Категория: Словари и энциклопедии » Философия » Философская энциклопедия





Другие новости по теме:

  • "ТРАКТАТ О НАЧАЛАХ ЧЕЛОВЕЧЕСКОГО ЗНАНИЯ"
  • “ИДЕИ К ФИЛОСОФИИ ПРИРОДЫ КАК ВВЕДЕНИЕ В ИЗУЧЕНИЕ ЭТОЙ НАУКИ”
  • “НАУКА ЛОГИКИ”
  • “ТРАКТАТ О ПРИНЦИПАХ ЧЕЛОВЕЧЕСКОГО ЗНАНИЯ”
  • «НАУКА ЛОГИКИ»
  • «ТРАКТАТ О НАЧАЛАХ ЧЕЛОВЕЧЕСКОГО ЗНАНИЯ»
  • АЛГЕБРА ЛОГИКИ
  • ГЁДЕЛЯ ТЕОРЕМА
  • ЕВРОПЕЙСКАЯ ФИЛОСОФИЯ ведет начало с греков, которые не только овладели с помощью уже существовавшего до них мышления новыми предметами
  • Класс, Множество (В Логике И Математике)
  • ЛОГИКИ-СОФИСТЫ
  • Логика современной физики
  • МНОГОЗНАЧНЫЕ ЛОГИКИ
  • НАУКА ЛОГИКИ
  • НЕКЛАССИЧЕСКИЕ ЛОГИКИ
  • Наука логики
  • О природе логики
  • Предмет знания. Об основах и пределах отвлеченного знания
  • СТАНОВЛЕНИЕ ТЕОРИИ НЕЛИНЕЙНЫХ ДИНАМИК В СОВРЕМЕННОЙ КУЛЬТУРЕ. СРАВНИТЕЛЬНЫЙ АНАЛИЗ СИНЕРГЕТИЧЕСКОЙ И ПОСТМОДЕРНИСТСКОЙ ПАРАДИГМ
  • Сумма логики
  • Трактат о принципах человеческого знания
  • ФИЛОСОФСКИЕ ШКОЛЫ
  • ФИЛОСОФСКИЕ ШКОЛЫ.
  • Философия логики
  • Философские основания физики: введение в философию науки
  • алгебра логики
  • гёделя теорема
  • закон логики
  • неклассические логики
  • язык логики



  • ---
    Разместите, пожалуйста, ссылку на эту страницу на своём веб-сайте:

    Код для вставки на сайт или в блог:       
    Код для вставки в форум (BBCode):       
    Прямая ссылка на эту публикацию:       






    Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
    Если это не так - свяжитесь с администрацией сайта.
    Материал будет немедленно удален.
    Электронная версия этой публикации предоставляется только в ознакомительных целях.
    Для дальнейшего её использования Вам необходимо будет
    приобрести бумажный (электронный, аудио) вариант у правообладателей.

    На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике. Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.







    Locations of visitors to this page



          <НА ГЛАВНУЮ>      Обратная связь